

INCREASING EQ-5D FROM 3 TO 5 LEVELS: IMPLICATIONS FOR USERS -DOES "NEW" MEAN "BETTER"?

EuroQol Research Foundation Symposium ISPOR, Vienna, 2016

Chair: Andrew Lloyd

www.euroqol.org

Introductions

Professor Paul Kind University of Leeds; HSE St Petersburg Dr. Joachim Marti Imperial College, London

Dr. Bas Janssen EuroQol Group

Professor Allan Wailoo NICE Decision Support Unit, University of Sheffield

Role of EQ-5D

- EQ-5D measures quality of life
- Estimation of QALYs for economic evaluation
- EQ-5D-5L developed to address perceived limitations of EQ-5D-3L
 - new response choices
 - new preference weights

Moving from 3 levels to 5...

Mobility

Mobility	
I have no problems in walking about	
I have some problems in walking about	
I am confined to bed	
Self-Care I have no problems with self-care	
I have some problems washing or dressing myself	
I am unable to wash or dress myself	
Usual Activities (e.g. work, study, housework, family or leisure activities) I have no problems with performing my usual activities	
I have some problems with performing my usual activities	
I am unable to perform my usual activities	
Pain/Discomfort I have no pain or discomfort I have moderate pain or discomfort I have extreme pain or discomfort	
Anxiety/Depression	
I am not anxious or depressed	
I am moderately anxious or depressed	
I am extremely anxious or depressed	

Issues with 3L?

- Sensitivity
 - Insensitive to mild health problems
 - 'Confined to bed'
- Valuation
 - UK values 25 years old
 - Worse than dead methods
 - Distribution of data trimodal
 - Regression models

```
www.euroqol.org
```


Developing 5L

- Large amount of work conducted to move to 5L
 - Qualitative research/ focus groups UK, France, Spain, China
- 8 international pilot studies
 - Worse than dead valuation different formats
 - Role of DCE methods to support valuation
 - Computer administration
 - Protocol/ quality assurance/ interviewer issues
 - Modelling approaches
- Subsequent programme of work to iron out new problems!

EQ-5D-5L

- Resulting EQ-5D-5L weights are now different
 - How do they differ?
 - Does this matter?
 - Would the new weights change decisions? Could it change the views of what is cost-effective?

rw.eurogol.org

EuroQoL Research Foundation Symposium ISPOR 19th Annual European Congress, November 2016

The impact of changes in EQ-5D-3L value sets

Paul Kind

Academic Unit of Health Economics, Institute of Health Science, University of Leeds Leeds, UK

Centre for Health Economics, Management and Policy, HSE University Saint Petersburg, Russia

Joachim Marti

Institute of Global Health Innovation, Imperial College London, UK

EQ-5D-3L

DESCRIPTION

- EQ-5D is a generic measure of health status defined in terms of 5 dimensions
- In its original format each dimension provides 3 levels of response
- Taken together these form a classification of 243 possible health states

VALUATION

- A summated index for each EQ-5D health state can be computed
- Weights for dimensions / levels have been estimated using several methods
- For economic evaluation submitted to NICE the preferred method is Time Trade-Off (TTO)

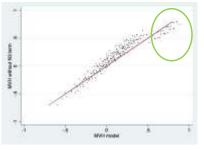
NICE social preferences for EQ-5D-3L

- Originate in the 1993 Measurement and Valuation of Health (MVH) study
 - > 3,000+ respondents
 - Representative sample of (the then) UK
- Protocol included multiple methods
 - Ranking
 - VAS rating
 - Time Trade-Off (TTO)

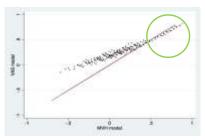
- Subset of 43 EQ-5D-3L health states selected for study
- Each respondent directly evaluated 13 health states
- Estimation model constructed to interpolate values for unobserved states
- Value decrements computed for each level / dimension

Sources of variation in value sets

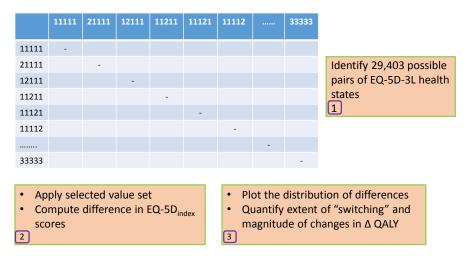
Protocol design	Data analysis
 Choice of method(s) Health state selection Size of choice set Perceptual setting Mode of administration 	 Level of measurement Form of statistical analysis Level of aggregation Measure of central tendency Dummy structure Interaction / main effects Constant

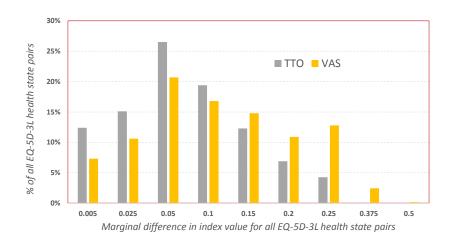

This study

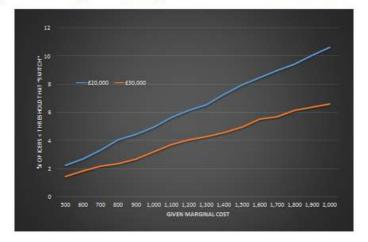
- Focuses on changes to the VALUE SET used to form index based on EQ-5D-3L health states
- Emphasis on extent of change associated with
 - structural issues in estimation model
 - deviation from preferred (TTO) method


- Takes the 1993 MVH value set as the reference comparator
- Basic question

Does use of an alternate value set yield changes in marginal benefit that would lead to "switches" in ICER position related to given threshold?

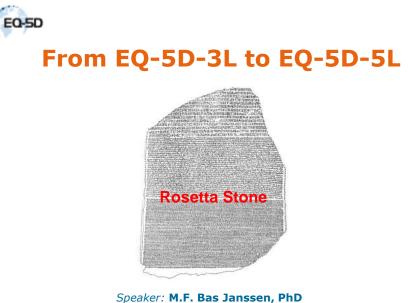

- Original MVH model based on 5*2 dummy variables plus N3 and constant
- Re-estimated without N3


- Standard MVH value set based on Time Trade-Off
- Re-estimated using VAS ratings


Marginal differences in health state values

Distribution of marginal EQ-5D_{index} scores

Percentage of "switching" EQ-5D health state pairs for a given marginal cost / fixed threshold


Temporal stability ?

Do social preferences for health remain invariant with time ?

More than 20 years on, do 1993 UK preference weights retain legitimacy for social decision-making?

Summary

- Potential value set differences can be linked with multiple causal factors
- Parameter uncertainty is less of an issue than structural model design
- These are "trumped" by the choice of valuation method
- These results are based on hypothetical changes to the value of incremental benefits NOT observed

Speaker: **M.F. Bas Janssen, PhD** Senior Researcher, EuroQol Research Foundation, Rotterdam, The Netherlands

EQ-5DEQ-5D-3L versus EQ-5D-5L

Mobility	
I have no problems in walking about	- 0
I have some problems in walking about	0
I am confined to bed	0
Self-Care	
I have no problems with self-care	0
I have some problems washing or dressing myself	0
I am unable to wash or dress myself	000
Usual Activities (e.g. work, study, housework, family or	
leisure activities)	
I have no problems with performing my usual activities	000
I have some problems with performing my usual activities	- 0
I am unable to perform my usual activities	0
Pain/Discomfort	
I have no pain or discomfort	0.0.0
I have moderate pain or discomfort	- 0
I have extreme pain or discomfort	8
Anxiety/Depression	13
I am not anxious or depressed	- 9
I am moderately anxious or depressed	000
I am extremely anxious or depressed	- 0

The EuroQol Group. EuroQol-a new facility for the measurement of health-related quality of life. Health Policy. **1990**. 16(3):199-208.

Herdman et al. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). *Quality of Life Research*, **2011**. 20(10):1727-1736.

MOBILITY	
have no problems in walking about	0
have slight problems in walking about	Ö.
I have moderate problems in walking about	0
I have severe problems in walking about	0
am unable to walk about	0
SELF-CARE	
I have no problems washing or dressing myself	(3)
have slight problems washing or dressing myself	0
have moderate problems washing or dressing myself	00000
have severe problems weshing or dressing myself	0:
am unable to wash or dress myself	9
USUAL ACTIVITIES (e.g. work, study, housework,	
family or leisure octivities)	
have no problems doing my usual activities	0.
I have slight problems doing my usual activities	0.
have moderate problems doing my usual activities	00000
have severe problems doing my usual activities	0
am unable to do my usual activities	a.
PAIN / DISCOMFORT	
have no pain or discomfort	0.
have slight pain or discomfort	0.
have moderate pain or discomfort	- Q.
have severe pain or discomfort	<u>a</u>
I have extreme pain or discomfort	00000
ANXIETY / DEPRESSION	0.22
am not anxious or depressed	2
am slightly anxious or depressed	0
am moderately anxious or depressed	8
am severely anxious or depressed	3
I am extremely anxious or depressed	(Q);

www.euroqol.org

Methods

- I. Equivalence of descriptive distributions of 3L vs 5L in various population groups
- II. Equivalence of 3L vs 5L value sets
- III.Combined distributional equivalence of description+valuation in 3L vs 5L
- IV.Final test of 3L vs 5L: Discriminative power, using empirical values (utilities) in known groups comparison

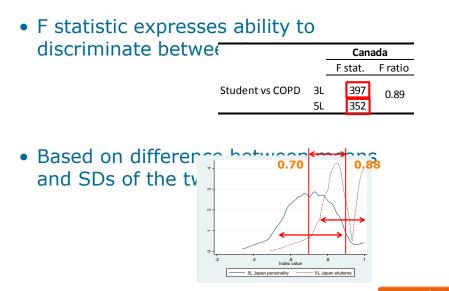
I. Projecting 3L on 5L EQ-5D description Redistribution from 3L to 5L na. problems 1 20 problems 1 2 slight 3 2 moterate. 4 ----unable to ... 5 unable to ... 51 31


Resulting in: reduced ceiling effects; increased discriminatory power; improved convergent validity; similar construct validity Equivalent and enhanced across

II. Comparing 3L vs 5L valuation

Models characteristics	Can	ada	Chi	na	Englar	nd/UK	Jap	an	Nether	rlands	South	Korea	Spa	in
-	3L	5L												
Intercept	0.111	0.051	0.039	-	0.081	-	0.152	0.061	0.071	0.047	0.050	0.096	0.024	-
Interaction parameters								•						
N3			0.022		0.269				0.234		0.050		0.291	
Num45sq		0.0085								•				•
Slope						0.9675								
C4												0.078		
Highest value	1	0.949	1	1	1	1	1	1	1	1	1	1	1	1
Second highest value	0.844	0.929	0.887	0.955	0.883	0.951	0.804	0.895	0.897	0.918	0.913	0.883	0.914	0.956
Lowest value	-0.340	-0.148	-0.149	-0.386	-0.594	-0.281	-0.111	-0.025	-0.329	-0.446	-0.171	-0.066	-0.654	-0.416
Upper gap	0.16	0.02	0.11	0.05	0.12	0.05	0.20	0.11	0.10	0.08	0.09	0.12	0.09	0.04
Range	1.34	1.10	1.15	1.39	1.59	1.28	1.11	1.03	1.33	1.45	1.17	1.07	1.65	1.42

Different weighting structure, country variance


5L enhanced, fewer discontinuities

IV. 3L vs 5L value sets discriminative power

- Which instrument differentiates best between healthy / sick, and between mildly / severely affected patients?
- Using a dataset containing 3L and 5L responses from 3919 people, ...
- ... and using value sets from countries where both a 3L and 5L value set is available (N=7) ...
- ... provides seven end-to-end comparisons of 3L vs 5L utilities
- Primary endpoint: the F-Statistic (Variation Between Sample Means / Variation Within the Samples)

anneed adapted 2

Healthy students vs patients

	_	Can	ada	Ch	ina	Engla	nd/UK	Jaj	ban	Nethe	rlands	South	Korea	Sp	bain
	_	Estat.	F ratio	E stat.	F ratio	E stat.	F ratio	F stat.	F ratio	F stat.	F ratio	F stat.	F ratio	E stat.	F ratio
COPD	3L 5L	397 352	0.89	519 458	0.88	358 324	0.91	449 448	1.00	261 289	1.11	521 400	0.77	437 365	0.84
Diabetes	3L 5L	48 45	0.94	71 61	0.87	54 37	0.69	45 40	0.89	29 27	0.91	82 42	0.51	82 42	0.52
Liver disease	3L 5L	36 19	0.53	47 30	0.64	33 13	0.40	29 17	0.60	22 9	0.39	57 12	0.21	53 16	0.30
RA	3L 5L	398 328	0.82	528 437	0.83	351 304	0.87	492 470	0.96	234 276	1.18	514 419	0.82	418 366	0.87
CVD	3L 5L	305 334	1.10	416 427	1.03	301 307	1.02	311 409	1.31	223 268	1.20	424 361	0.85	382 336	0.88
Stroke	3L 5L	565 563	1.00	806 680	0.84	561 536	0.96	651 741	1.14	527 497	0.94	555 577	1.04	575 573	1.00
Depression	3L 5L	223 165	0.74	234 192	0.82	181 175	0.96	202 224	1.11	185 176	0.95	231 194	0.84	198 194	0.98
Personality disorder	3L 5L	400 302	0.76	381 377	0.99	311 328	1.06	314 410	1.31	319 344	1.08	388 355	0.91	342 325	0.95

*All comparisons were significant at P< 0.05

Overall 3L discriminates even better compared to 5L. This is true for most countries

Mildly vs moderately or severely diseased patients

		Can	ada	Ch	ina	Engla	nd/UK	Jaj	ban	Nethe	rlands	South	Korea	Sp	ain
		F stat.	F ratio												
COPD vs diabetes	3L 5L	105 94	0.90	114 117	1.03	86 89	1.03	116 126	1.08	78 87	1.12	114 106	0.94	92 98	1.06
RA vs diabetes	3L 5L	93 79	0.84	103 100	0.97	73 76	1.04	121 121	0.99	59 78	1.31	95 103	1.08	72 90	1.25
CVD vs diabetes	3L 5L	73 83	1.14	86 100	1.17	67 79	1.19	75 109	1.44	62 77	1.25	88 92	1.04	76 85	1.11
Stroke vs diabetes	3L 5L	211 209	0.99	267 242	0.91	195 205	1.05	238 276	1.16	203 195	0.96	203 211	1.04	201 215	1.07
Depression vs diabete:	5 3L 5L	43 25	0.58	28 23	0.82	27 30	1.13	33 39	1.18	46 40	0.88	26 29	1.13	19 33	1.75
Personality vs diabete:	5 3L 5L	89 49	0.54	45 41	0.91	58 58	1.00	50 69	1.38	95 88	0.92	50 57	1.15	41 50	1.23
COPD vs liver disease	3L 5L	195 247	1.27	237 286	1.20	194 240	1.23	229 284	1.24	148 220	1.48	238 286	1.20	217 256	1.18
RA vs liver	3L 5L	172 216	1.25	217 251	1.16	168 213	1.27	235 274	1.17	115 203	1.77	202 281	1.39	177 240	1.36
CVD vs liver	3L 5L	132 213	1.61	174 235	1.35	146 207	1.42	149 235	1.57	112 188	1.68	181 239	1.32	175 215	1.23
Stroke vs liver	3L 5L	444 521	1.18	583 582	1.00	446 516	1.16	521 632	1.21	410 476	1.16	462 543	1.18	473 534	1.13
Depression vs liver	3L 5L	82 82	1.00	69 73	1.07	69 97	1.41	76 101	1.33	85 111	1.30	63 101	1.58	57 102	1.80
Personality vs liver	3L 5L	163 150	0.92	107 125	1.16	139 176	1.27	113 169	1.50	178 223	1.25	117 182	1.56	112 155	1.38

Overall 5L discriminates much better compared to 3L among different severity groups. This is true across countries.

Conclusions

- 5L shows enhanced psychometrics on descriptive data
- 5L shows smoother more 'natural' distributions, this affects discriminative power in general
- 3L seems discriminates better than 5L when comparing healthy students vs patients;
 5L discriminates better among severity classes. This is true for most countries although various language versions plus matching country value sets show different overall values *Explanation: in healthy students the winner (1111)*

'takes all' enhancing the contrast with the remaining states

• Caveats: Limitations of data (some groups from a single country); student cohort (Poland) as proxy for a healthy general population sample

The Distorraity of Sheffold.

Comparing 3L and 5L EQ-5D

Acknowledgements

<u>3L to 5L mapping:</u> Dr Monica Hernandez, Prof Steve Pudney – ScHARR, University of Sheffield <u>Case studies:</u> Dr Monica Hernandez, Dr Sabine Grimm – ScHARR, University of Sheffield Dr Manuel Gomes, Dr Zia Sadique – LSHTM,

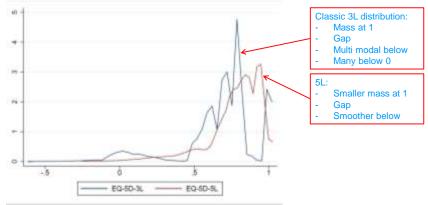
London. Dr David Meads, John O'Dwyer – University of Leeds

Allan Wailoo

Professor of Health Economics Director, NICE Decision Support Unit Health Economics and Decision Science School of Health and Related Research (ScHARR) University of Sheffield, UK

Modelling the relationship

Datasource	National Databank for Rheumatic Diseases	EuroQoL
N	5,192	3,691
Patient characteristics	Rheumatoid Arthritis	Range of disorders (and students)
Setting	United States and Canada	Denmark, England, Italy, the Netherlands, Poland, and Scotland
Method	Postal and web. 5L first then 3L. Massive separation.	5L first then 3L, little separation
Year	January 2011	
Range of disease	3L: -0.594 to 1 5L: -0.226 to 1	3L: -0.594 to 1 5L: -0.281 to 1


31/10/2016 © The University of Sheffield

32

31

Empirical distribution functions of 3L and 5L (NDB Jan 2011)

31/10/2016 © The University of Sheffield

Modelling method

- Need to map from 3L to 5L, and the other way round
- Joint model of the two descriptive systems, conditional on age and sex
- Copula-based model:
 - 10 equation model (5 items of the descriptive system x 2 instruments) allowing for the correlation between each
 - Differences in utility scores (UK tariffs) then follow from the relationship in descriptive systems
 - Overall difference made up of two parts:
 - Responses to descriptive systems
 - Tariffs for health states

31/10/2016 © The University of Sheffield

Modelling Headlines

34

- · The relationship between 3L and 5L is different between datasets
 - · Is this because the distribution of disease severity is different?
 - Is it because of disease specific aspects?
 - Different design issues?
- The models work very well in predicting 5L utility from 3L
- Stata code will be available to translate any 3L state into a predicted 5L, and vice versa.

Effect on cost-effectiveness 35

	I	CER (inc QALY	s)
Title	3L	5L EuroQoL	5L NDB
CARDERA	13,666	15,252	14,846
	(0.084)	(0.075)	(0.077)
CACTUS	3,058	9,481	23,022
	(0.15)	(0.05)	(0.02)
RAIN a)	184,700	738,800	1,231,333
	(0.02)	(0.005)	(0.003)
RAIN b)	294,137	714,333	714,333
	(0.051)	(0.021)	(0.021)
IMPROVE	-44,617	-48,113	-54,742
	(0.052)	(0.046)	(0.042)
COUGAR II	27,180	26,434	26,484
	(0.115)	(0.119)	(0.118)
ARCTIC	112,193	162,744	152,130
	(0.058)	(0.043)	(0.046)

CARDERA - Early Rheumatoid Arthritis. Methotrexate vs Methotrexate plus steroid, CACTUS - Computer Assisted therapy for Asphasia, RAIN traumatic brain injury pathways a) Dedicated neurocritical care units vs combined neurocritical and general critical care units b) Early transfer vs no or late transfer IMPROVE - suspected ruptured aortic aneurysms. Comparison of endovascular repair vs open repair. COUGAR2 - Docetaxel and Active Symptom Control versus Active Symptom Control Alone for Refractory Oesophagogastric Adenocarcinoma. ARCTIC - Attenuated dose Rituximab with ChemoTherapy In CLL 31/10/2016 © The University of Sheffield

Effect on cost-effectiveness 36

	IC			
Title	3L	5L EuroQoL	5L NDB	_
CARDERA	13,666 (0.084)	15,252 (0.075)	14,846 (0.077)	Marginal health
CACTUS	3,058 (0.15)	9,481 (0.05)	23,022 (0.02)	gain lower with 5L ICERs ↑
RAIN a)	184,700 (0.02)	738,800 (0.005)	1,231,333 (0.003)	
RAIN b)	294,137 (0.051)	714,333 (0.021)	714,333 (0.021)	
IMPROVE	-44,617 (0.052)	-48,113 (0.046)	-54,742 (0.042)	
COUGAR II	27,180 (0.115)	26,434 (0.119)	26,484 (0.118)	Except COUGAR II (advanced
ARCTIC	112,193 (0.058)	162,744 (0.043)	152,130 (0.046)	 cancer trial): Mortality gains important!

CARDERA – Early Rheumatoid Arthritis. Methotrexate vs Methotrexate plus steroid, CACTUS – Computer Assisted therapy for Asphasia, RAIN - traumatic brain injury pathways a) Dedicated neurocritical care units vs combined neurocritical and general critical care units b) Early transfer vs no or late transfer IMPROVE - suspected ruptured aortic aneurysms. Comparison of endovascular repair vs open repair. COUGAR2 - Docetaxel and Active Symptom Control versus Active Symptom Control Alone for Refractory Oesophagogastric AdenocarcinomaARCTIC -Attenuated dose Rituximab with ChemoTherapy In CLL 31/10/2016 © The University of Sheffield

Effect on cost-effectiveness ³⁷

	I			
Title	3L	5L EuroQoL	5L NDB]
CARDERA	13,666 (0.084)	15,252 (0.075)	14,846 (0.077)	Marginal health gain is usually
CACTUS	3,058 (0.15)	9,481 (0.05)	23,022 (0.02)	NDB mapping compared to
RAIN a)	184,700 (0.02)	738,800 (0.005)	1,231,333 (0.003)	EuroQoL dataset
RAIN b)	294,137 (0.051)	714,333 (0.021)	714,333 (0.021)	
IMPROVE	-44,617 (0.052)	-48,113 (0.046)	-54,742 (0.042)	
COUGAR II	27,180 (0.115)	26,434 (0.119)	26,484 (0.118)	
ARCTIC	112,193 (0.058)	162,744 (0.043)	152,130 (0.046)	

CARDERA – Early Rheumatoid Arthritis. Methotrexate vs Methotrexate plus steroid, CACTUS – Computer Assisted therapy for Asphasia, RAIN - traumatic brain injury pathways a) Dedicated neurocritical care units vs combined neurocritical and general critical care units b) Early transfer vs no or late transfer IMPROVE - suspected ruptured aortic aneurysms. Comparison of endovascular repair vs open repair. ARCTIC -Attenuated dose Rituximab with ChemoTherapy In CLL

31/10/2016 © The University of Sheffield

Effect on cost-effectiveness ³⁸

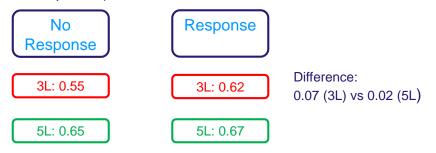
Title	3L	5L EuroQoL	5L NDB	
CARDERA	13,666 (0.084)	15,252 (0.075) <mark>89%</mark>	14,846 (0.077) <mark>92%</mark>	Impact is
CACTUS	3,058 (0.15)	9,481 (0.05) <mark>33%</mark>	23,022 (0.02) <mark>13%</mark>	particularly pronounced in CACTUS
RAIN a)	184,700 (0.02)	738,800 (0.005) <mark>25%</mark>	1,231,333 (0.003) <mark>15%</mark>	(aphasia in stroke) and RAIN
RAIN b)	294,137 (0.051)	714,333 (0.021) <mark>41%</mark>	714,333 (0.021) <mark>41%</mark>	(traumatic brain injury) studies
IMPROVE	-44,617 (0.052)	-48,113 (0.046) <mark>89%</mark>	-54,742 (0.042) <mark>81%</mark>	Severity of patients?
COUGAR II	27,180 (0.115)	26,434 (0.119) <mark>103%</mark>	26,484 (0.118) <mark>103%</mark>	- RAIN approx 0.3 at baseline
ARCTIC	112,193 (0.058)	162,744 (0.043) <mark>74%</mark>	152,130 (0.046) <mark>79%</mark>	- But CARDERA only 0.4

CARDERA – Early Rheumatoid Arthritis. Methotrexate vs Methotrexate plus steroid, CACTUS – Computer Assisted therapy for Asphasia, RAIN - traumatic brain injury pathways a) Dedicated neurocritical care units vs combined neurocritical and general critical care units b) Early transfer vs no or late transfer IMPROVE - suspected ruptured aortic aneurysms. Comparison of endovascular repair vs open repair. ARCTIC -Attenuated dose Rituximab with ChemoTherapy In CLL

31/10/2016 © The University of Sheffield

Effect on cost-effectiveness 39

	ICER (inc QALYs)			
Title	3L	5L EuroQoL	5L NDB	5L NDB *
CARDERA	13,666 (0.084)	15,252 (0.075)	14,846 (0.077)	18,100 (0.065)
CACTUS	3,058 (0.15)	9,481 (0.05)	23,022 (0.02)	
RAIN a)	184,700 (0.02)	738,800 (0.005)	1,231,333 (0.003)	Better mapping model uses HAQ and pain as covariates Lowers marginal QALY still further
RAIN b)	294,137 (0.051)	714,333 (0.021)	714,333 (0.021)	
IMPROVE	-44,617 (0.052)	-48,113 (0.046)	-54,742 (0.042)	
COUGAR II	27,180 (0.115)	26,434 (0.119)	26,484 (0.118)	
ARCTIC	112,193 (0.058)	162,744 (0.043)	152,130 (0.046)	


CARDERA - Early Rheumatoid Arthritis. Methotrexate vs Methotrexate plus steroid, CACTUS - Computer Assisted therapy for Asphasia, RAIN traumatic brain injury pathways a) Dedicated neurocritical care units vs combined neurocritical and general critical care units b) Early transfer vs no or late transfer IMPROVE - suspected ruptured aortic aneurysms. Comparison of endovascular repair vs open repair. COUGAR2 - Docetaxel and Active Symptom Control versus Active Symptom Control Alone for Refractory Oesophagogastric Adenocarcinoma. ARCTIC - Attenuated dose Rituximab with ChemoTherapy In CLL 31/10/2016 © The University of Sheffield

Impact on CE models

40

Impact on CACTUS model states (Computer Assisted therapy • for Asphasia):

31/10/2016 © The University of Sheffield

Discussion

Limitations

- Investigate impact of missing data imputation for CEAs
- More case studies needed
- · Need to better understand the impact by severity/disease area
 - Stata program to allow anyone to do this

Mapping between 3L and 5L

- The relationship between 3L and 5L instruments is well represented by the copula model approach
- · The relationship is different depending on the dataset
- The relationship is better modelled including HAQ and pain in the RA dataset
 - Do we need disease specific 3L/5L data and disease specific explanatory models for future HTA?
 31/10/2016 © The University of Sheffield

Impact on ICERs

- · Large differences in incremental QALYs and ICERs
 - · Movement up the severity scale and compression within smaller range
- Difference may be larger for more severe patients
 - More compression at this end of distribution
- Where mortality is a big driver the worsening in the ICER can be offset
- Impact also depends on the dataset used for mapping model
 - 3L and 5L results cannot be interpreted in the same way
 - Simple proportional adjustment not appropriate. Changes differ across the distribution

31/10/2016 © The University of Sheffield

42

Conclusions – Kind & Marti

- Show how cost effectiveness estimates may change with relatively small changes in HRQL methods
- Small changes to methods can change interpretation of cost effectiveness

 In EQ-5D-5L there were many small changes
- Also underlines sensitivity to valuation method – broader lessons for HTA bodies that accept many different approaches to utility estimation

Conclusions - Janssen

- Examines the effect of changing the descriptive system from 3L to 5L
 - Evidence suggests 5L is an improvement

Valuation data

- National value sets show 3L-5L differences
- 3L better in some analyses; 5L better in other analyses
- Is the 3L advantage actually pseudo-sensitivity arising from very large number of students in full health?
- More work needed to tease apart these effects?

Conclusions - Wailoo

- Explores relationship between 3L and 5L through mapping
- Identifies important effects on ICER
- 5L data is inflated and squeezed into smaller range
- Raises ICER estimates?
- But is this just a UK phenomenon?
 - Other 5L national value sets are more similar to 3L sets in their distribution

Wrap up

- 5 items has produced a powerful tool
 - 5L is different to 3L and produces different data
 - Testing shows some advantages for 5L, but not universally
- Significant ongoing role for 3L
 - Much ongoing research, new value sets, updating old value sets
- But also ongoing shift to 5L
 - Implications for decision makers need to be understood
- EQ Group also revisiting the fundamental questions of description and valuation that underpin our measures