
1 

 

New methods for analysing the distribution of EQ-5D 
observations 

 
Zamora B1, Parkin D1,2, Feng Y1, Bateman A3, Herdman M1, Devlin N1 

 

1. Office of Health Economics.  2. City, University of London. 3. Cambridgeshire Community Services NHS 

Trust and University of Cambridge. 

Abstract 

Background:  EQ-5D profile data are often under-analysed, but can yield important insights into levels of and 

changes in patient and population health. One characteristic is the extent to which they cluster together in 

a small number of profiles or are dispersed evenly over many profiles. This can have implications for 

interpreting statistical analysis of the corresponding EQ Index data, and for clinical management of patients. 

Aims:  This paper aims to develop methods for describing observed distributions of EQ-5D profiles and to 

explore the properties of the new methods compared with existing ones (e.g. Shannon’s Index).  We 

investigate the methods using both real, from the UK NHS, and simulated EQ-5D data, and show how they 

can be used to generate new insights into, for example, the differences between the 3L and the 5L in how 

profile data are clustered.   

Methods:  We report three methods we have developed to characterise and summarise the distribution of 

health states in patient reported outcome (PRO) data within a sample or population of patients: the Health 

State Density Index (HSDI), Health State Density Curve (HSDC) and estimated Power Law functions (PLFs). 

We compare these and existing methods from information theory (e.g. Shannon’s Index), in examining the 

distribution of EQ-5D health profiles across three groups of patients in two data sets: Cambridgeshire 

Community Services NHS’s electronic patient records for the EQ-5D-5L; and the Health Survey for England 

2014 for the EQ-5D-3L. We also use data from the NHS PROMs programme which reports EQ-5D-3L before 

and after four surgical procedures. The properties of the various methods are further examined using 

simulated data sets.  

Results: Each method has different properties and will give different insights into patients’ data.  For 

example, the Shannon index (absolute and relative) is not sensitive to random variations but decreases 

slowly with “rare health states”. The HSDI decreases slowly with random variations and is strongly affected 

by “rare” health states with large decreases towards zero (total inequality). 

Conclusions: These methods can be used by researchers to better understand the characteristics of EQ-5D 

profile data. They can also be used by clinicians to understand the degree to which their patients’ needs 

are homogeneous or characterised by distinct sub-groups, with implications for treatment planning. 

Finally, the methods can also be used as a way of comparing differences between instruments, such as the 

3L and 5L, in measuring health.  
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1. Introduction 

 

EQ-5D data are collected for many purposes and used to inform many different types of decisions. Despite 

that, there is a tendency to focus analysis on the EQ Index, essentially summarising the EQ-5D profile data 

collected from patients or populations by using value sets.  There are several reasons why this may not be 

an adequate analytical approach.  

First, the value sets are designed to meet the requirements of one particular application: the estimation of 

QALYs for cost effectiveness analysis. This is reflected both in the methods used (stated preferences) and 

whose preferences are sought (by convention, the general public, rather than patients). Where the 

estimation of QALYs is not an aim of data collection, the rationale for using value sets to summarise profile 

data may be quite weak.  

Secondly, value sets introduce an exogenous source of variance into the analysis of EQ-5D data.  This can 

bias statistical inference (Parkin et al, 2010). Conclusions drawn from statistical analysis of EQ Index data 

about, for example, the relative effectiveness of a technology relative to its comparator in a clinical trial, or 

whether there are statistically significant differences between the population health of regions, or which 

hospitals provide statistically significantly higher quality of care, may depend on the particular properties 

of the value set used. Different value sets, which place a greater or lesser weight on dimensions and levels 

and interactions between them, could yield different statistical results. More generally, there is no neutral 

way of summarising EQ-5D profile data. This is not a criticism of the EQ-5D or the index; the same can be 

said of all preference or non-preference based approaches used to generate summary scores of PRO 

instruments.  

Thirdly, focusing on the EQ Index means that important insights from patient data may be missed. EQ-5D 

profile data tell us in which dimensions problems are experienced, and with what magnitude – and for 

changes in health, which dimensions change and by how much. Focussing analysis on what is happening 

within each dimension provides information that is somewhat obscured when they are aggregated in the 

EQ Index (Gutacker et al, 2013).  The EQ-VAS tells us something else again – the patients’ overall 

assessment of their own health, relating both to factors captured in the EQ-5D profile and other things 

(Feng et al, 2014). 

In previous work, we sought to understand the nature of distributions of EQ Index data, and noted that 

these are driven both by the properties of the value sets and distinctive distributions of EQ-5D profile data. 

For example, we noted that typical distribution of EQ-5D-3L Index data arising from use of the MVH value 

set – characterised by two groups – arises both from the peculiarities of the MVH value set and from the 

fact that only certain profiles appeared in these groups (Parkin et al, 2016).  

We also noted that, when examining EQ-5D-3L data across multiple, large data sets, a surprisingly small 

number of profiles (<12) can account for the vast majority of the data (80%) (Parkin et al, 2016).  We also 

observed that often within particular conditions only some levels within each dimension are observed – 

which affects assessment of health improvements by giving very specific starting points. We have observed 

similar things in analysis of EQ-5D-5L data – although more profiles are observed, and the data are less 

clustered (Feng et al, 2016).  With respect to both the 3L and the 5L, some theoretically possible profiles 

are very rarely observed.  

This has led us to focus more on EQ-5D profile data.  Examining cumulative frequency is a simple but 

effective way of capturing important information about its distribution, but does not provide a means of 
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summarising and reporting the concentration of profiles in data sets that would allow us to compare and 

contrast this characteristic between different data sets.  

This led us to think about ways of summarising the extent to which observations cluster on a small number 

of profiles or there are a wide range. We recognised analogies to measures of the distribution of income, 

such as the Lorenz curve and Gini coefficient, with indices used to measure information complexity and 

species diversity, such as Shannon’s index, and with power law analyses that relate the number of profiles 

to the frequency with which they are observed.  

Such measures would facilitate better understanding of the profile data underpinning EQ Index data. They 

would potentially enable comparisons between different version of EQ-5D instruments. They may also be 

relevant to clinical management, for example homogenous patient groups can be managed by protocols, 

whereas dispersed EQ-5D profiles suggest a need for more complex individualised patient management.  

The aim of this study is to develop methods for describing observed distributions of EQ-5D profiles and to 

explore the properties of the new methods compared with existing measures.  We demonstrate the use of 

the methods using both real, from the UK NHS, and simulated EQ-5D data, and show how the methods can 

be used to generate new insights into, for example, the differences between the 3L and the 5L in how 

profile data are clustered. 

 

2. Data 

Cambridgeshire Community Services musculoskeletal therapy, specialist nursing, and community 

rehabilitation patients completed the EQ-5D-5L before treatment, with resulting data stored in NHS’s 

electronic patient records data warehouse. There are 30,284 observations. 

The 2014 Health Survey for England (HSE) comprised a multi-stage stratified sample representing the 

population in England living in private households. A complete EQ-5D-3L profile was available for 7,085 

people aged 16 years, with men over 55 over- and people under 35 under-represented.  

The NHS Patient Reported Outcome Measures programme (PROMs) collects EQ-5D-3L data before and 

after surgery from patients undergoing hip and knee replacements and varicose vein and groin hernia 

repairs in all providers of NHS-funded care in England.  We used data from three years: 2009-2010, 2010-

2011, and 2011-2012.  Except for groin hernia, a majority of patients were women, and the oldest patient 

groups were knee and hip replacements. 

Table 1 presents the sample sizes for the data sets and statistics on age and gender. All data sets only 

include patients with complete EQ-5D profile data. 
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Table 1. Sample characteristics for the data sets 

 N 

%  

female 

Mean age 

(years) Age range 

Cambridgeshire NHS: All Patients 30,284 59.6 59.1 13-104 

Cambridgeshire NHS: MSK 19,999 59.8 52.5 13-96 

Cambridgeshire NHS: Specialist Nursing 3,366 52.1 67.0 17-104 

Cambridgeshire NHS: Rehabilitation 6,919 62.5 74.4 18-103 

Health Survey for England 2014 7,085 56.1 49.7 16 and over 

NHS PROMs Hernia 2009-10 19,416 1.3 62.8 20 and over 

NHS PROMs Hernia 2010-11 21,265 1.2 62.7 20 and over 

NHS PROMs Hernia 2011-12 7,927 0.1 64.8 20 and over 

NHS PROMs Hips 2009-10 29,506 59.9 68.8 20 and over 

NHS PROMs Hips 2010-11 37,923 60.6 68.6 20 and over 

NHS PROMs Hips 2011-12 5,194 67.4 69.8 20 and over 

NHS PROMs Knee 2009-10 32,078 56.7 69.7 20 and over 

NHS PROMs Knee 2010-11 39,098 57.5 69.7 20 and over 

NHS PROMs Knee 2011-12 4,913 61.3 70.1 20 and over 

NHS PROMs Varicose Veins 2009-10 7,923 72.0 52.6 20 and over 

NHS PROMs Varicose Veins 2010-11 8,141 71.4 53.0 20 and over 

NHS PROMs Varicose Veins 2011-12 2,258 76.5 54.4 20 and over 

Note: Mean age in the NHS PROMs data was estimated as the mean of the 10-years intervals reported in 

the data, where the mean was imputed from HSE data. 

 

3. Methods 

Building on our earlier research on EQ-5D distributions, we have developed new ways of describing the dis-

tributions of health states, based on existing indexes such as the Gini coefficient and the Shannon index. 

We use them to describe and summarise the degree of differentiation of people across EQ-5D health 

states, but they could be applied to other health state instruments. 

 
3.1. Health State Density Curve and Health State Density Index 

The evenness of the distribution of categorical health profiles data can be described using a Health State 

Density Curve (HSDC) and a Health State Density Index (HSDI). These are based on the Lorenz curve, a 

cumulative frequency curve that compares a real distribution of a variable with a uniform distribution 

representing equality, and its associated Gini coefficient 

The advantage of these measures is that they can be applied to the distribution of any variable, categorical 

or continuous, whilst other inequality indexes, such as Theil’s entropy measures, are specifically defined 

for continuous variables such as income. However, the categorical variable must be ordered, and health 

profiles typically are not fully-ordered, as some are not comparable using prior logic (Devlin et al., 2010).  

The distribution of health profiles in the HSDC is ranked from the most to the least frequent profile, where 

the ranking of equally frequent profiles is arbitrary. The vector of cumulative distribution of the total S 

health profiles (
1

𝑆
,

2

𝑆
, . . ,

𝑆−1

𝑆
, 1) is represented in the Y-axis and the cumulative distribution of patients 𝑥𝑖 =
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∑
𝑁𝑗

𝑁
𝑖
𝑗=1  associated with each health profile is represented in the X-axis, where 𝑁𝑗  is the number of 

observations in profile j, and N is the sample size. The resulting graphical function is the HSDC which shows 

exponential growth. 

The HSDI is based on the area between the diagonal of total equality and the HSDC. It is defined in the 

interval [0,1] such that 1 represents total equality with HSDC being the diagonal, and zero represents total 

inequality or the lower triangle area. This is the complement of the definition of the Gini coefficient, which 

can be calculated as: 

(1) 𝐻𝑆𝐷𝐼 = ∑ (𝑥𝑖 − 𝑥𝑖−1)(𝑦𝑖 + 𝑦𝑖−1)𝑆
𝑖=1  

where (𝑥𝑖, 𝑦𝑖) are respectively the points of the X- and Y-axis, representing the cumulative distribution of 

patients and the cumulative distribution of profiles.1 

The HSDI has these desirable properties for an inequality/evenness index: 

(a) Independence of number of observed health profiles S.  Following the method proposed in Smith and 

Wilson (1996), we tested the values of HSDI for 1,2,3,4,5,10,20, and 40 repetitions of a distribution of 

observations of 4 health profiles (1479, 1, 1, 1), so that S varies between 4 and 160. The HSDI has the same 

value of 0.75 for the 8 replications, so it is independent of S. 

(b) The range of HSDI is the unit interval.  HSDI reaches one for total equality, which is the case where 

there are the same number of patients in all health profiles, and HSDI is zero for total inequality. 

(c) The HSDI changes linearly with linear changes in the distribution of patients. We calculated the HSDI for 

the Molinari sequence (Molinari, 1989) which distributes 1000 observations between two profiles from 

total inequality (999,1) to total equality (500,500) by switching 99/100 observations in five steps. The 

results of the HSDI in this sequence go from a minimum of 0.5 (for the most unequal distribution 999-1) to 

HSDI=1 (for the total equality pair 500-500), decreasing by 0.1 in five equal steps.  

 

3.2. Shannon Index and Shannon Evenness 

The Shannon Index (H’) was derived as a measure of information content (Shannon, 1948) but many of its 

properties and extensions have been developed to measure biodiversity.  It is calculated as:  

(2) 𝐻′ = − ∑ 𝑝𝑖
𝑆
𝑖=1 log(𝑝𝑖) 

where 𝑝𝑖  denotes the proportion of patients in health profile i, and S is the number of observed profiles. In 

most cases, especially in information theory, the Shannon index is calculated using the natural logarithm, 

which is what we use. However, some applications of the Shannon Index in HRQoL research (Agborsangaya 

et al, 2014; Janssen et al, 2013; Von Steinbuechel et al, 2016) defined the index using logarithm base 2. 

In general, information or diversity contained in H’ measured from samples is lower than the true 

maximum population or community diversity H, which generates a bias in the Shannon index and an 

                                           
1 The HSDI for a unique profile is 𝐻𝑆𝐷𝐼 = 𝑥1𝑦1 = 1, which is also the input of the sum in formula (1) for 
the first (most frequent) profile if S>1. 
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unwanted dependency on the number of different variants in a sample, S. As Pielou (1966) remarks, H’ 

cannot be regarded as exactly equal to the true diversity H even when the population sizes of each 

profile, 𝑁𝑖, are exactly known, and then 𝑝𝑖 =
𝑁𝑖

𝑁
, unless the observed population is a sample from a 

conceptually infinite "super-population" of which it is exactly representative. 

The expected value of (2) when 𝑝𝑖 =
𝑁𝑖

𝑁
 is calculated using natural logarithms and neglecting terms of order 

𝑁−2 (Lande, 1996; Pielou, 1966) is:  

(3) 𝐸(𝐻′) = 𝐻 −
𝑆̅−1

2𝑁
 

where 𝑆̅ is the upper limit of number of health profiles (richness) as if obtained from an infinite population. 

This is generally unknown in ecological samples, but the EQ-5D instruments define the maximum number 

of health profiles, 𝑆̅ = 35 = 243 for the 3L, and 𝑆̅ = 55 = 3,125 in the 5L. Therefore, for any sample of 

size N, the bias of the Shannon index (Bias H’) can be measured as: 

(4) 𝐵𝑖𝑎𝑠 𝐻′ =
𝑆̅−1

2𝑁
 

Therefore, the Shannon Index is underestimated in a sample of size N, and the bias is larger for the 5L than 

for the 3L. This bias ensures that the 5L is larger or has more absolute discriminatory power than the 3L 

even if they have the same H’; for example, if the number of observed health profiles is the same in both 

instruments and patients are uniformly distributed across profiles, H’=log(S). For a given sample size, we 

can measure this theoretical difference in absolute discriminatory power as (3,125-243)/2N, which is the 

difference in the bias between the instruments. Some existing comparisons of the 3L and 5L do not 

measure or acknowledge the bias when ascertaining a larger discriminatory power of the 5L than of the 3L 

(e.g. Janssen et al, 2012). For samples of more than 1000 patients, the bias can be negligible for the 3L but 

it should not be ignored when interpreting 5L results. 

Pielou (1975) defined an evenness index based on the Shannon Index as: 

(5)  𝐽′ =
𝐻′

ln (𝑆)
 

The J’ index is interpreted as relative discriminatory power since it is defined as the Shannon Index 

(absolute discriminatory power) divided by its maximum, log(S), which is the maximum discriminatory 

power in a sample obtained from the uniform distribution. The J’ index is intended to compensate for the 

dependency of H’ on S. In summary, the properties of the Shannon indexes are: 

(a) Independence of number of observed health profiles S. A property of information content is that a 

system contains more information the more possible states it contains. The Shannon index measures this, 

as it is an increasing monotonic function of S. A second property is that there is more information when 

the probability of encountering each state is high, e.g. all states are equally abundant.  The J’ index 

(relative discriminatory power) captures this, which requires J’ to be independent of S. As Smith and 

Wilson (1996) test, the evenness index J’ is not independent of S for low values of S if measured from an 

uneven distribution, but it becomes asymptotically stable after S reaches about 25 if this distribution is 

replicated. 
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(b) The range of H’ is [0, log(S)] and the range of J’ is [0,1]. H’ and J’ reach maximum value, log(S) and one, 

respectively, for total equality or maximum discriminatory power, which is the case where there are the 

same number of patients in all health profiles. 

(c) The H’ and J’ indexes have the Molinari (parabolic) shape. We have calculated the H’ and J’ indexes for 

the Molinari sequence, including 11 communities distributing 1000 patients between two profiles. Both 

indexes increase from zero at the pair of profiles 999-1 to their maximum for the equal distribution 500-

500. The indexes grow following a concave shape such that the rate of growth decreases when 

approaching total equality. 

 

3.3. Comparing the HSDI and Shannon Evenness J’ 

We first compare the indexes in terms of information theory or discriminatory power, where larger values 

of the index imply a more even distribution of patients across profiles, associated with greater 

differentiation between groups of patients. For example, an index close to zero means that a large 

proportion of patients are described by one profile. In this case, we can accurately predict the health 

profile of a patient without needing any patient information. We would like also to know the sensitivity of 

the indexes to random changes in the number of patients which do not reflect changes in underlying 

evenness of the population. 

Secondly, we compare how sensitive the indexes are to rare versus abundant profiles. The ecological 

literature describes how the Shannon index is “strongly affected by importance of species in the middle of 

the sequence. For large samples, H’ is consequently somewhat damped against effects of differences in 

quantitative proportions of the first few species. Effect of the rarer species are also damped” (Whittaker, 

1972). These properties mean that H’ and J’ indexes do not capture properly the EQ-5D typical abundance 

of rare profiles. This will be shown when comparing J’ with HSDI. Firstly, we present both indexes 

calculated from the Molinari sequence in Figure 1. The HSDI changes linearly and it does not achieve the 

minimum of total inequality at zero. This is a consequence of having only two profiles (S=2); adding rare 

profiles of 1 patient to the sequence with 999 patients in the most abundant profile would allow to achieve 

HSDI=0.06 at S=30. 

In addition of the simulations with the Molinari sequence, we present simulations of the EQ-5D-3L and EQ-

5D-5L profiles from the multinomial distribution, starting from a random sample of the Dirichlet 

distribution reflecting total evenness, that is, identical prior probabilities of each level for each of the five 

dimensions. We also construct uneven distributions with different number of observed profiles. We 

compute the changes in the indexes for each additional profile where profiles are ranked from the most to 

the least frequently observed. Considering as dependent variable the resulting sequence of indexes from 

profile 1 to S, HSDIs and J’s, we have observed a decreasing linear relationship between HSDIs and J’s and 

the proportion of rare profiles.  

The estimation of the proportion of rare profiles we have considered comes from the fact that the number 

of rare profiles (profiles with very few patients) can be (upwards) approximated as the difference between 
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the number of observed profiles, S, and the numbers equivalent which is a concept used in ecological 

diversity measured by the exponential of H’.  The numbers equivalent of a diversity index is the number of 

equally likely elements needed to produce the given value of the diversity index (Jost, 2007).  

By calculating the series of HSDIs and J’s indexes for each sample, setting the sequence of the subscript s 

from s=1 to s=S, with HSDI=J’=1 when s=1, we estimate the following: 

𝐻𝑆𝐷𝐼𝑠 = 𝛼 + 𝛽(𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑟𝑎𝑟𝑒 𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠)𝑠 + 𝜀𝑠 

𝐽′𝑠 = 𝛾 + 𝛿(𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑟𝑎𝑟𝑒 𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠)𝑠 + 𝜀𝑠 

where the explanatory variable proportion of rare profiles is estimated as: 

(𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑟𝑎𝑟𝑒 𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠)𝑠 =
𝑠 − 𝑒𝑥𝑝(𝐻𝑠

′)

𝑠
, 𝑤𝑖𝑡ℎ 𝑠 = 1,2, … . , 𝑆 

Table 2 presents results from these simulated samples with the linear regressions of both relative indexes, 

HSDI and J’, on the proportion of rare profiles. Table 2 also includes the maximum number of observed 

profiles, the maximum percentage of rare profiles, and the values of the indexes for the first two profiles 

s=2, and the complete sample at maximum s=S. 

Table 2. Linear regression of HSDI and J’ on proportion of rare profiles 

 Simulations EQ-5D-5L profiles 

 Total evenness Uneven 230 profiles Uneven 40 profiles Uneven 40 profiles 

 HSDI J HSDI J HSDI J HSDI J 

Slope -2.9182 -0.1237 -0.9153 -0.3035 -2.1743 -0.2691 -1.3839 -0.3101 

Intercept 0.9542 0.9998 0.8418 1.0030 0.9403 0.9976 0.9149 0.9984 

R2 0.9586 0.9999 0.9766 0.9946 0.9520 0.9971 0.9214 0.9989 

S 3124 3124 230 230 40 40 40 40 

Index (at s=2, s=S) (1,0.80) (1,0.99) (0.97,0.23) (0.99,0.78) (0.97,0.76) (0.99,0.97) (0.97,0.56) (0.99,0.90) 

proportion rare (at s=S)  0.062  0.696  0.105  0.297 

(min.- max) obs per profile  (1-17)  (1-1329)  (286,1461)  (1-1766) 

N (total obs.)  25000  25000  25000  25000 

 Simulations EQ-5D-3L profiles 

 Total evenness Uneven 34 profiles Uneven 22 profiles Uneven 12 profiles 

 HSDI J HSDI J HSDI J HSDI J 

slope -6.0559 -0.1737 -0.8907 -0.5915 -1.0337 -0.5492 -1.0253 -0.5881 

intercept 0.9778 0.9999 0.8721 0.9078 0.9238 0.9963 0.8960 0.9894 

R2 0.9557 0.9995 0.9796 0.9706 0.9786 0.9992 0.9662 0.9987 

S 243 243 34 34 22 22 12 12 

Index (at s=2, s=S) (0.99,0.90) (0.99,0.99) (0.71,0.09) (0.74,0.37) (0.99,0.23) (0.99,0.60) (0.90,0.32) (0.97,0.64) 

proportion rare (at s=S)  0.014  0.891  0.707  0.592 

(min.- max) obs per profile  (21-59)  (1-6322)  (1-2481)  (1-3609) 

N (total obs.)  10000  10000  10000  10000 

Notes: 
All regression coefficients are statistically significant with p-value<0.01 
In the simulations of total evenness, the differences in numbers of observations per profile are random. 
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The first differential characteristic observed refers to the sensitivity to random variations with no rare 

profiles, as resulting from the “total evenness” simulations. In this case, the decrease in J’ cannot be 

perceived given the low proportion of rare observations but HSDI is very sensitive to these random 

variations as if they were rare observations; HSDI decreases from 1 to 0.8. This behaviour of HSDI resulting 

from random variations cannot be distinguished with that from an uneven sample of 40 profiles with no 

rare profiles (proportion of rare profiles around 0.1) whilst J’ is slightly more sensitive to capture this 

underlying heterogeneity than random variations and decreases from 0.99 to 0.97. 

The second differential characteristic refers to the sensitivity to rare profiles, with the slope of the HSDI 

approaching -1 which would render a zero value for the HSDI for a proportion of rare observations equal to 

one. In contrast, the estimated slopes for J’ in the simulations with rare observations point out a slower 

decrease of J’ with the addition of rare profiles. Comparing the slope from the regressions from J’, a robust 

finding is that J’s is more sensitive to rare profiles for the 3L than for the 5L. 

Therefore, J’ indicates larger relative discriminatory power than HSDI, and this is not affected by random 

variations in the importance of profiles. HSDI informs better than J’ on the effect and importance of rare 

profiles. 

 
Figure 1. HSDI and J in Molinari sequence 

 

 

3.4. Power Law Analysis 

Another way to express the relationship between profiles and observations in a data set is to estimate its 

functional form as a power law relationship. This is described by Ball (2005) as: “if the value of some 

quantity y depends on the value of another quantity x according to a power law relationship, this means 
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that each time x is doubled, y increases by some constant factor. The exponent of the power law is a 

number that tells us how big this factor is.” 

Specifically, we have observed exponential growth of the HSDC so that the cumulative frequency of 

profiles increases exponentially with the cumulative frequency of patients. This relationship can be 

expressed in semi-logarithmic form so that we predict the cumulative proportion of observations from the 

cumulative proportion of profiles estimating the following regression:   

(6)      𝑥𝑖 = 𝑎 + 𝑏 log(𝑦𝑖) + 𝜀 

where 𝑦𝑖  is the cumulative number of profiles, 𝑥𝑖 is the cumulative number of observations up to the ith 

profile and 𝜀 is random error. A potential use of this is to predict the number of profiles in a sample of a 

given size.  

We have estimated the power law for our simulated samples of the EQ-5D profiles and present the results 

in Table 3 which can be interpreted in relation to those of the HSDI and J indexes presented in Table 2.  

 

Table 3. Estimations of the power law from simulated samples 

 Simulations of EQ-5D-5L profiles Simulations of EQ-5D-3L profiles 

 

Total 
evenness 

Simulation 
1 

Simulation 
2 

Simulation 
3 

Total 
evenness 

Simulation 
1 

Simulation 
2 

Simulation 
3 

 

Cumulative 
proportion 
of observa-

tions 

Cumulative 
proportion 
of observa-

tions 

Cumulative 
proportion 
of observa-

tions 

Cumulative 
proportion 
of observa-

tions 

Cumulative 
proportion 
of observa-

tions 

Cumulative 
proportion 
of observa-

tions 

Cumulative 
proportion 
of observa-

tions 

Cumulative 
proportion 
of observa-

tions 

log(yt) 0.2656 0.1900 0.3037 0.3143 0.2735 0.0716 0.2088 0.2570 

intercept 0.8648 1.0743 0.9285 1.0249 0.8194 1.0353 1.0946 1.0926 

R2 0.8367 0.9312 0.9432 0.9679 0.8233 0.7294 0.8052 0.8848 

S 3124 230 40 40 243 34 22 12 

proportion rare (at s=S) 0.062 0.696 0.105 0.297 0.014 0.891 0.707 0.592 

(min.- max) obs per profile (1-17) (1-1329) (286-1461) (1-1766) (21-59) (1-6322) (1-2481) (1-3609) 

N (total obs.) 25000 25000 25000 25000 10000 10000 10000 10000 

 

The goodness of fit of the power law, captured by R-squared, is better for samples with proportion of rare 

profiles in the middle ranges than for uniform samples or with very large proportion of rare profiles. 

Moreover, for uniform samples the intercept is around 0.8 meaning an underestimation of the cumulative 

percentage of observations when considering all profiles. The slope of the power law (the exponent) is 

smaller for samples with large proportions of rare profiles, meaning a prediction of a larger cumulative 

proportion of observations for any given any given proportion of profiles than in other samples. This is 

consistent with lower values of the HSDI and J’ indexes. 

 

4. Results 

4.1. Distributional characteristics of EQ-5D profiles 
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Table 4. Distribution of EQ-5D dimen-
sions and levels Mobility Self-care 

Usual  
Activities 

Pain/ 
Discomfort 

Anxiety/ 
Depression 

Cambridgeshire NHS All Patients      
No problems 31.25 54.54 17.57 10.86 52.73 

Slight problems 25.54 23.86 28.84 26.94 25.70 

Moderate problems 27.48 15.29 30.63 39.35 15.54 

Severe problems 13.42 4.30 13.29 18.94 4.20 

Extreme problems 2.31 2.00 9.67 3.90 1.83 

Cambridgeshire NHS MSK      
No problems 37.07 61.69 16.05 3.63 56.16 

Slight problems 26.96 23.00 33.32 26.74 24.40 

Moderate problems 24.44 12.23 32.81 43.70 14.01 

Severe problems 10.83 2.64 12.96 21.70 3.89 

Extreme problems 0.71 0.45 4.87 4.24 1.54 

Cambridgeshire NHS Specialist Nursing      
No problems 33.10 57.40 35.68 37.40 46.79 

Slight problems 19.88 17.53 22.01 28.55 28.64 

Moderate problems 24.81 14.32 22.58 22.67 17.80 

Severe problems 17.80 6.24 12.03 9.27 4.63 

Extreme problems 4.43 4.52 7.69 2.11 2.14 

Cambridgeshire NHS Rehabilitation      
No problems 13.53 32.49 13.17 18.88 45.70 

Slight problems 24.19 29.46 19.21 26.74 28.02 

Moderate problems 37.56 24.61 28.26 34.92 18.88 

Severe problems 18.79 8.17 14.87 15.67 4.89 

Extreme problems 5.93 5.28 24.50 3.80 2.51 

Health Survey for England 2014      
No problems 82.67 94.52 84.18 67.20 80.76 

Moderate problems 17.15 5.17 14.42 28.98 17.06 

Extreme problems 0.18 0.31 1.40 3.82 2.17 

NHS PROMs Hernia-Before      
No problems 79.28 96.40 71.41 32.23 84.25 

Moderate problems 20.65 3.44 26.57 63.75 14.80 

Extreme problems 0.07 0.15 2.02 4.02 0.96 

NHS PROMs Hips-Before      
No problems 6.40 44.84 6.16 0.94 57.52 

Moderate problems 93.17 53.96 74.20 57.40 37.58 

Extreme problems 0.43 1.20 19.63 41.66 4.90 

NHS PROMs Knee-Before      
No problems 6.25 68.47 8.86 0.99 62.29 

Moderate problems 93.46 30.78 77.41 59.50 33.90 

Extreme problems 0.29 0.75 13.73 39.51 3.81 

NHS PROMs Varicose Vein-Before      
No problems 77.39 96.74 75.93 26.88 78.43 

Moderate problems 22.50 3.12 22.91 67.10 19.65 

Extreme problems 0.11 0.14 1.16 6.03 1.93 

NHS PROMs Hernia-After      
No problems 82.80 95.07 78.83 66.47 87.44 

Moderate problems 17.13 4.73 19.74 31.74 11.71 

Extreme problems 0.07 0.21 1.43 1.79 0.85 

NHS PROMs Hips-After      
No problems 54.75 76.33 50.60 51.79 80.36 

Moderate problems 45.14 23.00 44.96 44.17 17.67 

Extreme problems 0.11 0.66 4.44 4.04 1.97 

NHS PROMs Knee-After      
No problems 46.48 78.25 41.73 32.09 75.97 

Moderate problems 53.38 21.16 52.93 61.50 21.52 

Extreme problems 0.13 0.59 5.35 6.41 2.51 

NHS PROMs Varicose Vein-After      
No problems 82.91 96.20 83.25 61.15 83.47 

Moderate problems 17.05 3.70 15.72 35.80 14.90 

Extreme problems 0.05 0.10 1.03 3.05 1.63 
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Tables 4, 5, and 6 summarise key characteristics of the EQ-5D data from the different data sets. The 

characteristics of the PROMs data are almost constant over the three years, so this summary is for a 

pooled data set. 

The HSE covers the general population, on average younger than our patient population, and might be 

expected to be the healthiest. However, Table 4 suggests that Varicose Veins and Groin Hernia patients 

have even better health states after surgery than the general population. Conversely, the health profiles of 

the three oldest groups, Rehabilitation and Hip and Knee patients, have many more problems. 

 

Table 5. 10 most frequent EQ-5D-5L profiles 

All Patients MSK Patients Specialist Nursing Rehabilitation 

Profile Cumul. % Profile Cumul. % Profile Cumul. % Profile Cumul. % 

11121 0.0397 11121 0.0495 11111 0.1319 11111 0.0186 

11111 0.0717 11221 0.0948 11121 0.1714 21221 0.0304 

11221 0.1036 21221 0.1282 11112 0.2056 11121 0.0416 

21221 0.1297 21231 0.1602 11122 0.2219 32331 0.0519 

21231 0.1527 11231 0.1869 21121 0.2368 33331 0.0616 

11231 0.1712 11131 0.2091 11113 0.2499 32332 0.0711 

31331 0.1884 31331 0.2312 21221 0.2614 22221 0.0795 

11131 0.2048 11111 0.2510 21111 0.2727 21111 0.0879 

11331 0.2163 11331 0.2677 11211 0.2834 33332 0.0954 

21331 0.2277 21331 0.2837 21211 0.2938 21121 0.1028 

 

There is less concentration in Rehabilitation patients than the other two groups, 10% compared with 

almost 30% in the 10 most frequent profiles. 

 

Table 6: 10 most frequent EQ-5D-3L profiles 

HSE 

NHS PROMs 

Groin Hernia-Before Groin Hernia-After Hip Replacement-Before Hip Replacement-After 

Profile Cumul. % Profile Cumul. % Profile Cumul. % Profile Cumul. % Profile Cumul. % 

11111 0.5743 11121 0.3075 11111 0.5688 21221 0.1664 11111 0.3556 

11121 0.6829 11111 0.5786 11121 0.6978 22221 0.2887 21221 0.4552 

11112 0.7485 11221 0.6711 11221 0.7415 22232 0.3757 22221 0.5260 

11122 0.7812 21221 0.7374 21221 0.7839 22222 0.4551 11121 0.5823 

21221 0.8135 11122 0.7815 11112 0.8136 22231 0.5310 22222 0.6361 

21121 0.8438 21121 0.8174 21222 0.8316 21222 0.5938 11211 0.6721 

21222 0.8611 21222 0.8414 21111 0.8493 22332 0.6538 21222 0.7076 

11221 0.8738 11112 0.8629 11122 0.8664 21231 0.7057 11221 0.7428 

22221 0.8840 11222 0.8827 21121 0.8811 22331 0.7396 21211 0.7762 

22222 0.8933 22221 0.8929 21211 0.8956 21232 0.7705 21121 0.8008 
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Table 6 (cont.): 10 most frequent EQ-5D-3L profiles 

NHS PROMs 

Knee Replace. -Before Knee Replacement-After Varicose Vein-Before Varicose Vein-After 

Profile Cumul. % Profile Cumul. % Profile Cumul. % Profile Cumul. % 

21221 0.2524 11111 0.2246 11121 0.3538 11111 0.5426 

21231 0.3543 21221 0.3789 11111 0.5771 11121 0.7030 

21222 0.4439 11121 0.4835 11122 0.6464 21221 0.7435 

22232 0.5052 22221 0.5483 21221 0.7042 11112 0.7829 

22221 0.5637 21222 0.6090 11221 0.7558 11122 0.8192 

21232 0.6207 11221 0.6679 21121 0.7992 21222 0.8453 

22231 0.6684 22222 0.7267 21222 0.8314 21121 0.8692 

22222 0.7144 21121 0.7637 11112 0.8572 11221 0.8930 

21121 0.7543 11211 0.7914 11222 0.8768 21111 0.9035 

22332 0.7859 21211 0.8117 21122 0.8891 22222 0.9126 

 

The most frequent 3L profile is 11111 (‘full health’) for the HSE and PROMs after surgery. All samples 

capture more than 90% of observations in the 10 most frequent profiles. HSE and after surgery Groin 

Hernia and Varicose Vein are the most concentrated, with 75% of observations in 3 profiles. 11111 and 

11121 are the most frequent profiles in these 3 samples, reported by 70%. 

 

4.2. Applying the HSDI and Shannon indexes to EQ-5D profiles 

As explained in section 3, two set of indexes are reported: the Shannon index H’, which increases according 

to absolute informativity or absolute discriminatory power of the EQ-5D to classify patients in each 

dataset; and a second set of indexes: HSDI and Shannon evenness J’, which decrease with the degree of 

clustering of the distribution, from 0 for maximum clustering/inequality to 1 for minimum 

clustering/maximum equality. The J’ index is also interpreted as relative discriminatory power or evenness 

index, which is maximum for total evenness or uniform distribution of patients across health states, in 

which case the value of J’ is one and the value of H’ is maximum at ln(S).  

Figures 2, 3, and 4 show the HSDC. The HSDC shows that EQ-5D-5L profiles are most concentrated for MSK 

patients, and the HSDC crosses for Rehabilitation and Specialist Nursing although it shows less 

concentration for Rehabilitation in the most frequent profiles. Consequently, the larger HSDI is obtained 

for Rehabilitation patients. 
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Figure 2. HSDC: EQ-5D-5L profiles from Cambridgeshire patients 

 

The HSDC for the 3L is more concentrated than that of the 5L, with lower HSDIs. The HSDC for PROMs 

before and after surgery profiles almost overlap but the after data are more concentrated and have a 

lower HSDI. 

Figure 3. HSDC: EQ-5D-3L profiles from HSE 

 

Figure 4. HSDC: EQ-5D-3L profiles from NHS PROMs 

 

 

HSDI=0.21

0
20

40
60

80
10

0

C
um

ul
at

iv
e 

pe
rc

en
ta

ge
 o

f p
ro

fil
es

0 20 40 60 80 100
Cumulative percentage of observations

Cambridgeshire: All Patients

HSDI MSK=0.19

HSDI Nursing=0.34

HSDI Rehab=0.39

0
20

40
60

80
10

0
 

0 20 40 60 80 100
Cumulative percentage of observations

total evenness MSK

Nursing Rehabilitation

Cambridgeshire: By Condition

HSDI=0.09

0
2
0

4
0

6
0

8
0

1
0

0

C
u

m
u
la

t
iv

e
 
p

e
r
c
e

n
t
a
g
e

 
o

f
 
p
r
o

f
il
e

s

0 20 40 60 80 100
Cumulative percentage of observations

HSE 2014

HSDI Before=0.06
HSDI After=0.05

0
2
0

4
0

6
0

8
0

1
0

0

C
u

m
u
la

ti
v
e
 %

 o
f 
p

ro
fi
le

s

0 20 40 60 80 100
 

NHS PROMs Groin Hernia

HSDI Before=0.11
HSDI After=0.09

0
2
0

4
0

6
0

8
0

1
0

0
 

0 20 40 60 80 100
 

NHS PROMs Hips

HSDI Before=0.10
HSDI After=0.09

0
2
0

4
0

6
0

8
0

1
0

0

C
u

m
u
la

ti
v
e
 %

 o
f 
p

ro
fi
le

s

0 20 40 60 80 100
Cumlative % of observations

NHS PROMs Knee

HSDI Before=0.09

HSDI After=0.07

0
2
0

4
0

6
0

8
0

1
0

0

 

0 20 40 60 80 100
Cumulative % of observations

evenness Before After

NHS PROMs Varicose Veins



15 

 

Table 7. HSDI and Shannon indexes from EQ-5D profiles 

 

Number 
of profiles 

S 

Shannon 
index 

H' 
HSDI 

 

Shannon 
Evenness 

J' 

 
Bias H' 

 

EQ-5D-5L profiles      

Cambridgeshire NHS: All Patients 1,730 5.89 0.21 0.79 0.05 

Cambridgeshire NHS: MSK 1,141 5.41 0.19 0.77 0.08 

Cambridgeshire NHS: Specialist Nursing 732 5.38 0.34 0.82 0.46 

Cambridgeshire NHS: Rehabilitation 1,240 6.39 0.39 0.90 0.23 

EQ-5D-3L profiles      

Health Survey for England 2014 94 1.92 0.09 0.42 0.02 

NHS PROMs Hernia – Before 143 2.30 0.06 0.46 0.00 

NHS PROMs Hernia – After 140 1.89 0.05 0.38 0.00 

NHS PROMs Hips – Before 147 3.00 0.11 0.60 0.00 

NHS PROMs Hips – After 158 2.71 0.09 0.54 0.00 

NHS PROMs Knee – Before 147 2.87 0.10 0.57 0.00 

NHS PROMs Knee – After 153 2.85 0.09 0.57 0.00 

NHS PROMs Varicose Veins - Before 104 2.32 0.09 0.50 0.01 

NHS PROMs Varicose Veins - After 98 1.89 0.07 0.41 0.01 

 

The estimated H’ values confirm that the absolute discriminatory power of the EQ-5D-5L is larger than that 

of the 3L (see Table 7). This is a direct consequence of the larger number of observed profiles in the 5L, but 

may also reflect a more even distribution, implying better discrimination between patients. This is 

confirmed by comparing the 5L and 3L results for the evenness indexes J’ and HSDI (see Table 7). Both 

indexes are lower for the 3L. Moreover, the values of the J’ index are closer to 1 than those of HSDI 

confirming the different sensitivity of the indexes to the proportion of rare profiles, with J’ index being less 

affected by the addition of rare profiles which are the majority of profiles for the EQ-5D, as reported by 

only one or two patients. On the contrary, the HSDI decreases steeply capturing the inequality added by 

rare profiles. 

With regard to discriminatory power, the largest H’ is achieved from Cambridgeshire Rehabilitation 

patients, with H’ = 6.39; adjusting for underestimation bias, the true H for this group could be 6.6, close to 

the maximum H’ for the uniform distribution (7.1 = ln(1240)). The relative discriminatory power of the 

profile is very large, reflected by J’ = 0.9.  

To compare the discriminatory power between Cambridgeshire MSK and Specialist Nursing, we must 

consider the larger H’ bias of Specialist Nursing. Taking this into account, the EQ-5D-5L discriminates better 

both in absolute and in relative terms for Specialist Nursing patients than for MSK patients, according to all 

3 indexes. Of note is that the difference in the HSDI between MSK and Specialists Nursing is greater than 

that of J’. We analyse in the next subsection the different effects of rare profiles in both groups. 

For the 3L profiles, there is a general pattern of greater concentration of the healthiest profiles (HSE, Groin 

Hernia after surgery, and Varicose Vein after surgery) related to less discriminatory power as reported by 

the three indexes H’, J’, and HSDI. The exception is that the HSDI for the HSE is larger than for most of the 
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PROMs profiles, because it contains fewer rare profiles; a total of S=94 different profiles compared to 

between 98 and 158. 

Health improvement after surgery is associated with decreased absolute and relative discriminatory 

power, except that J’ for Knee surgery does not change. 

 

4.3. Behaviour of HSDI and J’ indexes to concentration and rareness 

We analyse here whether the linear relationship between relative indexes (HSDI and J’) and the proportion 

of rare profiles we found in the simulated profiles also holds in the population and patient data. Therefore, 

the linear regression parameters would inform us on the degree of concentration and on whether the 

differences between the indexes can be attributed to random variations in the number of patients versus 

rare profiles. The results are presented in Table 8.1 and Table 8.2. 

 

Table 8.1 Linear regression of HSDI and J’ on proportion of rare profiles 

 EQ-5D-5L Cambridgeshire data sets EQ-5D-3L dataste 

 All patients MSK Specialist Nursing Rehabilitation HSE 2014 

 HSDI J HSDI J HSDI J HSDI J HSDI J 

slope -0.7460 -0.2581 -0.7564 -0.2827 -0.7229 -0.0861 -0.8862 -0.1856 -0.8306 -0.4485 

intercept 0.8053 1.0046 0.8024 1.0072 0.8466 0.8828 0.8356 0.9959 0.8596 0.8560 

R2 0.9993 0.9782 0.9921 0.9796 0.9749 0.2900 0.9886 0.9941 0.9817 0.8910 

S 1730 1730 1141 1141 732 732 1240 1240 94 94 

Index (at s=2, s=S) 
(0.95, 
0.21) 

(0.99 
,0.79) 

(0.98, 
0.19) 

(0.99, 
0.77) 

(0.73, 
0.34) 

(0.78, 
0.82) 

(0.89, 
0.39) 

(0.96, 
0.90) 

(0.66, 
0.09) 

(0.63, 
0.42) 

proportion rare (at 
s=S)  0.791  0.803  0.703  0.522  0.9276 

(min.- max) obs per 
profile  (1-1201)  (1-990)  (1-444)  (1-129)  (1-4069) 

N (total obs.)  30,284  19,999  3,366  6,919  7,085 
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Table 8.2 Linear regression of HSDI and J’ on proportion of rare profiles 

 EQ-5D-3L datasets 

 PROMS Hernia Before PROMs Hernia After PROMs Hips Before PROMs Hips After 

 HSDI J HSDI J HSDI J HSDI J 

slope -0.8382 -0.5546 -0.8543 -0.5188 -0.8471 -0.4525 -0.8352 -0.4512 

intercept 0.8410 1.0042 0.8739 0.9031 0.8241 1.0139 0.8466 0.9724 

R2 0.9827 0.9770 0.9864 0.8990 0.9854 0.9853 0.9918 0.9204 

S 143 143 140 140 147 147 158 158 

Index (at s=2, s=S) (0.97,0.06) (0.99,0.46) (0.68,0.05) (0.69,0.38) (0.92,0.1) (0.98,0.6) (0.72,0.09) (0.76,0.54) 

proportion rare (at s=S)  0.9303  0.9528  0.8634  0.9047 

(min.- max) obs per profile  (1-14539)  (1-26831)  (1-11507)  (1-24157) 

N (total obs.)  47,276  47,168  69,132  67,924 

 EQ-5D-3L datasets 

 PROMS Knee Before PROMs Knee After PROMs VV Before PROMs VV After 

 HSDI J HSDI J HSDI J HSDI J 

slope -0.8361 -0.4604 -0.8230 -0.4732 -0.8291 -0.5095 -0.8399 -0.5053 

intercept 0.8247 1.0048 0.8186 1.0100 0.8327 0.9803 0.8579 0.9052 

R2 0.9912 0.9672 0.9864 0.9795 0.9835 0.9798 0.9847 0.9390 

S 147 147 153 153 104 104 98 98 

Index (at s=2, s=S) (0.79,0.1) (0.87,0.57) (0.91,0.09) (0.97,0.57) (0.89,0.09) (0.96,0.5) (0.73,0.07) (0.77,0.41) 

proportion rare (at s=S)  0.8802  0.8871  0.9024  0.9324 

(min.- max) obs per profile  ( 1-18281)  (1-15962)  (1-6247)  (1-9549) 

N (total obs.)  72,423  71,084  17,658  17,597 

 

The regressions presented in Table 8.1 and Table 8.2 confirm the pattern found in Table 2 from the 

simulated samples with an important exception which we analyse in more detail; this exception occurs in 

the sample of Specialist Nursing patients reporting the EQ-5D-5L profiles in Cambridgeshire health centres. 

Apart from the case of Cambridgeshire Specialist Nursing, all regressions present almost perfect goodness 

of fit, with the lowest R-squared=0.89 found for the regression of J’ from HSE 2014. Similar values of the R-

squared below 1 are found for the regressions of J’ in PROMs Hernia and Varicose Vein after surgery. These 

three distributions of the EQ-5D-3L are characterised by a large ceiling with more than half of sample 

observations (see Table 6) which can affect a larger decrease of J in the first few profiles.  This is also 

shown by the intercept estimate being slightly smaller than one in the J’ regressions (around 0.90).  

Again, HSDI is more sensitive to rare profiles than J’ index and it shows an almost constant slope in the 

interval (-0.8, -0.9), so that the proportion of rare profiles observed around 0.9 produces a decrease of 0.72 

in the HSDI, rendering the index in its final values around 0.1 for the 3L samples. The largest values of the 

HSDI in the 5L samples are mainly explained by a smaller importance of rare profiles, especially in 

Rehabilitation patients with only 52% of rare profiles. The values of J’ around 0.4 found in the EQ-5D-3L 

samples are also explained by the larger sensitivity of J’ to rare profiles, with negative slope around -0.5. 

However, in the 5L samples, J’ is larger due to both a lower proportion of rare profiles and a flatter pattern 

of the linear regression. 

The case of Cambridgeshire Specialist Nursing sample is remarkable and it cannot be detected by merely 

comparing the indexes, which are similar to those obtained from Rehabilitation patients. However, the 

regression pattern of J’ presents a fundamental difference with a very low goodness of fit (R-squared=0.29) 
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hinting a nonlinear relation between the index and the proportion of rare profiles. This nonlinear relation 

can be observed in Figure 5 which presents the data and fitted regressions for the three Cambridgeshire 

groups.  

Figure 5. Relationship indexes and proportion of rare profiles 

 

The case of Specialist Nursing can be described as a sample with two groups of patients. A first group of 

around one-fourth of the sample is composed by a concentrated distribution of 5 profiles. And the rest of 

patients are almost uniformly distributed across the rest of observed profiles (727 profiles). Both the J’ and 

HSDI index decrease when considering patients in the first few profiles, up to s=5, with a high 

concentration of the first three profiles (with 444, 133, and 115 patients). However, between the profile 

s=6 and the final profile s=732, the distribution of patients approaches a uniform distribution of 2,569 

patients distributed across 727 profiles, with a maximum of 44 patients, and a minimum of 1 patient per 

profile. This explains the increase in both indexes ( J’ after the 5th profile, and HSDI after the 10th profile), 

increase which is maintained for the J’ index given that it is not sensitive to random variations in the 

number of patients. 

4.4. Power Law Analysis 

The power law is estimated as 𝑦̂𝑖 = 𝑎̂ + 𝑏̂ log(𝑥𝑖) , where y is the cumulative proportion of observations 

and x is the cumulative proportion of profiles.  The estimates for the different data sets using Ordinary 

Least Squares are shown in Figures 6 to 9, calculated excluding the profile 11111 for both 5L and 3L profiles 

and rare profiles with one or two patients for the 3L. As shown in the estimations from simulated samples 

(Table 3), this allows to reduce the proportion of rare observations and improve the goodness of fit of the 

power law. The goodness of fit as measured by R-squared is always good; it is better for the 5L than the 3L 

data. 
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The constant coefficient a is correctly estimated at around 1, reflecting the fact that the total set of profiles 

must contain all observations (x = 1; log(1)=0; y=1).  The estimated values for y using OLS can give 

impossible values >1 at higher levels of x, showing a limitation of this simple estimator. 

The b coefficient shows the sensitivity of the power law relationship to the concentration of profiles.  

Because x lies between 0 and 1, log(x) is negative.  So, the larger b is, the less concentrated is the 

distribution; any cumulative proportion of profiles predicts a smaller cumulative proportion of 

observations. 

For the EQ-5D-5L, the largest b coefficient is for rehabilitation, suggesting that this is the least 

concentrated distribution, which is consistent with the results presented from the other methods.  For the 

EQ-5D-3L, the largest b coefficients are for Knee and Hip surgery data.  They are larger after than before 

surgery but this result is strongly affected by the removal of the ceiling 11111 given that a remarkable 

effect of the surgery is evidenced by the increase in the ceiling (see Table 6). 

 

Figures 6-9: Power Law Analysis 
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5. Discussion and conclusions 

In this paper, we have reported new methods for describing the distribution of EQ-5D profiles 

diagrammatically and via summary indices and power functions.  Together with other indices available in 

the literature, these provide a set of techniques which complement existing methods for describing EQ-5D 

profile data.  Our exploration of the properties of these indices show that they each perform somewhat 

differently with respect to their sensitivity to particular aspects of observed distributions. 

Our hope is that these methods will encourage those collecting EQ-5D data to pay more attention to the 

profile data provided by patients.  Our methods may also have applications in describing the concentration 

or dispersion of self-reported health in patient groups, in a manner than can inform their clinical 

management.  

Our application of these methods to NHS data provides an additional way of investigating the 

discriminatory power of the EQ-5D-5L compared to the EQ-5D-3L in both general and patient populations. 

Our methods can describe how the EQ-5D instruments differentiate between patients in comparisons 

within or across diseases, or before and after treatment. The results reported here supports the conclusion 

reported elsewhere (Janssen et al, 2013) is that the added levels of the EQ-5D-5L allows a better 

differentiation of patients. However, an additional observation is that this occurs within the most frequent 

profiles rather than by generating more rare profiles. In fact, the importance of rare profiles is lower in the 

datasets we explore for the 5L than in those of the 3L version. Also, the relative importance of rare profiles 
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increases with the level of health gained after the four interventions considered in PROMs data. This is 

associated with more highly concentrated PROMs EQ-5D-3L profile data after than before surgery, as 

patients shift from a (wider) range of poor health states to converge on (narrower) set of milder states. 
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