# Is there a shelf life for EQ-5D value sets: evidence of evolving health preferences

# towards EQ-5D-5L

Meixia Liao<sup>1</sup>, Zhihao Yang<sup>2</sup>, Nan Luo<sup>1</sup>

 <sup>1</sup> Saw Swee Hock School of Public Health, National University of Singapore, Singapore.
 <sup>2</sup> Health Services Management Department, Guizhou Medical University, Guiyang, China.

# Abstract

# **Objectives**

To compare TTO values and value sets based on them between recent and early EQ-5D-5L value set studies.

# Methods

Data from early and recent EQ-5D-5L value set studies in China and Singapore were analyzed. The early Chinese study was conducted in 2012 (N=1271), and the recent one in 2023 (N=1206). The early Singaporean study was conducted in 2014-2015 (N=1000), and the recent one in 2023-2024 (N=500). Health preference was measured by composite time trade-off (cTTO). We compared the cTTO data from early and recent studies within each country, in terms of value distribution, mean values for each health state, logical consistency, and resultant value sets.

# Results

In Chinese studies, respondents were similar in sex but differed in age, education, and residency. The recent study showed higher proportion of 1 value (8.35% vs 2.88%), higher mean observed values for mild states (p-value<0.05), and lower logical inconsistency rate (1.53% vs 4.78%, p-value<0.001). Model predicted values from the recent study were higher for mild states (p-value<0.05) and lower for severe states (p-value<0.05), with the value range widened from (-0.339, 0.881) to (-0.541, 0.967). The rank order of five dimensional disutility changed from mobility (0.303) > pain/discomfort (0.268) > anxiety/depression (0.224) > self-care (0.222) > usual activities (0.204) of the early study to pain/discomfort (0.425) > anxiety/depression (0.301) > mobility (0.289) > usual activities (0.252) > self-care (0.241).

In Singaporean studies, respondents were similar in sex and ethnicity but differed in age and education. The recent study showed higher proportion of 1 value (15.03% vs 9.48%) and lower proportion of -1 value (14.73% vs 22.20%), higher mean observed values for mild and moderate states (p-value<0.05), and comparable logical inconsistency rates. Model predicted values from the updated study were higher for mild and moderate states (p-value<0.05), with the value range widened from (-0.569, 0.823) to (-0.653, 0.960). The rank order of five dimensional disutility changed from anxiety/depression (0.318) > pain/discomfort (0.310) > mobility (0.291) > self-care (0.259) > usual activities (0.214) of the early study to pain/discomfort (0.445) > anxiety/depression (0.365) > mobility (0.304) > self-care (0.250) = usual activities (0.250).

# Conclusion

In both China and Singapore, the cTTO values from the recent EQ-5D-5L valuation studies and the value sets based on them differed from those derived from early studies, suggesting the evolving of the general public's health preferences.

#### Introduction

Value sets for preference-based measures, which represents a set of utility values for all possible health states defined by the measure's descriptive system, play a critical role in informing healthcare decisions across a variety of settings and applications. These value sets are primarily applied in two key areas [1]. First, they are used as quality adjustment weights in the calculation of quality-adjusted life years (QALYs) for cost-utility analysis in health technology assessment (HTA). Second, they serve as a means of summarizing health-related quality of life (HRQoL) profile data into a single index for statistical analysis in non-QALY applications, such as population health studies and patient condition studies.

EQ-5D is one of the most widely used preference-based measures [2]. It assesses health status across five dimensions: mobility (MO), self-care (SC), usual activities (UA), pain/discomfort (PD), and anxiety/depression (AD) [3]. EQ-5D value sets are typically generated by using standardized EuroQol Valuation Technology (EQ-VT) protocols to elicit preferences from representative general population samples within specific countries or regions. Over the years, many countries have established their country-specific value sets for different versions of the EQ-5D. As of January of 2025, EQ-5D-3L and EQ-5D-5L value sets are available for 36 countries/regions, and EQ-5D-Y-3L value sets have been developed for 9 countries/regions [4].

After their initial development, many EQ-5D value sets have remained in use for over a decade. There are growing concerns regarding the continued validity and relevance of these existing values sets in contemporary context [1, 5]. One of the major concerns is that population composition might have changed significantly since the time of original data collection, due to demographic changes such as aging populations and urbanization. Moreover, cultural and societal shifts, such as increased awareness of mental health and changing attitudes toward euthanasia and end-of-life care, as well as major public health events (e.g., COVID-19 pandemic) may result in changes in society's health preferences. Beyond the shifts in population composition and societal preference, refinements and advancement in valuation methodologies have also emerged. Previous research suggests that methodological elements, including EQ-VT version and quality control (QC) processes, were significantly associated with some dimension-level coefficients of value sets [6]. The importance of QC processes in ensuring interviewer adherence to protocols and enhancing overall data quality has been widely recognized [7, 8]. Earlier valuation studies that primarily relied on less rigorous methodologies may have produced value sets that are less reliable. These issues raise concerns about the shelf

life of value sets and whether earlier value sets require updating to better reflect contemporary population health preferences and methodological advancement.

With growing recognition of these issues, Norman et al. [5] have proposed a framework for identifying and evaluating whether an existing value set remains fit for purpose or requires updating. However, there has been a lack of empirical research examining whether health preferences evolve within the same country over time and how these shifts manifest in value set studies. To address this gap, this study aimed to compare time trade-off (TTO) data collected in early and recent EQ-5D-5L value set studies in China and Singapore, providing empirical insights into the potential evolution of health preferences and the necessity of periodic updates to value sets.

#### Methods

#### Data sources and study design

This study used TTO data from four EQ-5D-5L value set studies conducted in China and Singapore [9-11](**Table 1**). All four studies followed the standardized EQ-VT protocol, albeit in different versions. The EQ-VT protocol specifies the preference elicitation methods and the health states (or profiles) to be valued. It includes a computer-assisted, interviewer-administered data collection tool and an in-process QC system, ensuring methodological consistency across studies [12]. The EQ-VT version 1 faced several data quality issues, including high rates of inconsistent values, value clustering, and low values for mild health states. The EQ-VT version 2 addressed these concerns by improving TTO practice questions, introducing a feedback module, and implementing QC monitoring and reporting. The EQ-VT lite version was developed for use in studies where it is challenging to recruit a large general population sample.

The EQ-VT protocol uses the composite TTO (cTTO) and discrete choice experiment (DCE) techniques. In cTTO, an iterative elicitation procedure is used to determine the values of EQ-5D health states [13]. In essence, for health states considered better-than-dead (BTD), respondents identified their point of indifference between living x years in full health (Life A) and living 10 years in an impaired health state (Life B), resulting in a BTD value calculated as x/10. For health states perceived as worse-than-dead (WTD), the lead-time TTO approach was applied. Participants determined their indifference point between living x years in full health

(Life A) and living 10 years in full health followed by 10 years in an impaired state (Life B), leading to a WTD value computed as (x-10)/10.

The early Chinese EQ-5D-5L valuation study [9] was conducted in 2012 through face-to-face computer-assisted personal interviews (CAPI) in five metropolitan cities. A total of 1271 general population respondents were recruited using quota sampling based on age, sex, and education level. Following the EQ-VT 1.0 protocol, a total of 86 health states were directly valued, with each respondent valuing 10 health states using cTTO. Unlike later studies, no formal QC procedures were implemented.

The recent Chinese EQ-5D-5L valuation study [10] expanded geographic coverage and incorporated QC procedures. Data were collected in 2023 using face-to-face CAPI interviews across 15 provinces and cities, covering five geographical regions. A total of 1206 general population respondents were recruited using quota sampling based on age, sex, education level, and registered residence (rural/urban). Following the EQ-VT 2.1 protocol, 86 health states same as those included in version 1.0 were directly valued using cTTO, with each respondent valuing 10 health states.

The early Singaporean EQ-5D-5L valuation study was conducted between 2014 and 2015 using face-to-face CAPI interviews. A total of 1000 general population respondents were recruited using quota sampling based on age, sex, ethnicity, and education level [14]. The study followed the EQ-VT 1.1 protocol, with 86 health states directly valued using cTTO, and each respondent valuing 10 health states.

The recent Singaporean EQ-5D-5L valuation study [11] in 2023–2024 employed a hybrid data collection approach that combined face-to-face and video conferencing interviews. A total of 500 general population respondents were recruited using quota sampling based on age, sex, ethnicity, and education level. The study followed the EQ-VT 2.1 (Lite) protocol, with 91 health states (comprising the 86 health states from the standard EQ-VT protocol and 45555, 54555, 55455, 55545, and 55554) directly valued using cTTO, and each respondent valuing 20 health states [15].

#### Data analysis

Descriptive analyses were performed to examine respondent characteristics. Continuous variables were reported as mean and standard deviation (SD) and categorical variables as

frequencies and percentages. Comparisons between the early and recent value set studies were performed using chi-square tests for categorical variables and two-sample t-tests for continuous variables.

We compared the cTTO data from the early and recent value set studies, in terms of logical consistency, value distribution, mean values for health states, and dimensional disutility estimated using modelling analysis. Logical consistency was defined as a better health state having an equal or higher value than a logically worse health state. We calculated the individual logical consistency rates and percentages of respondents who provided consistent responses across all cTTO tasks. Value distributions were examined using frequency analysis and histograms.

Simple and multiple linear regression models with cTTO value as the dependent variable were used to examine differences in observed mean health state valuations between the early and recent value set studies. Following the classification method of Roudijk et al.[16], health states were categorized into mild (at most moderate problems in up to two dimensions), severe (extreme problems in at least two dimensions), and moderate (all other states excluding mild and severe states) states. Simple linear regression models were conducted across all health states, as well as separately for mild, moderate, and severe states, and for each of the 86 health states individually. Multiple linear regression models were conducted separately for mild, moderate and severe states to account for additional covariates. In the Chinese study, each multiple linear regression model study time (early/recent), level sum scores (LSS) (as an indication of health state severity), age group, sex, and residency, along with interaction terms between study time, LSS, age group, sex, and ethnicity, along with interaction terms between study time and age group, sex and ethnicity.

To investigate how dimensional disutility and value sets based on cTTO values may differ between the early and recent studies, we modeled the cTTO data using the 8-parameter crossattribute level effects (CALE) model. The CALE model was chosen as it outperformed the 20parameter main effects model in cross-validation analyses in numerous EQ-5D valuation studies [17-21] including the four studies used in this analysis. The models from the early and recent valuation studies were compared for the ranking of dimensional disutility (determined by the coefficient magnitude for the worst level in each dimension), the range of possible values, and the proportion of worse-than-dead (WTD) states out of the 3125 health states. Differences in predicted values for the 3125 EQ-5D-5L health states between models of the early and recent studies were visualized using scatter plots.

The statistical significance level was set to 0.05. All statistical analyses were performed using Stata/SE 18.0 (StataCorp, College Station, TX).

# Results

#### Chinese EQ-5D-5L value set studies

The demographic characteristics of respondents in the recent and early Chinese valuation studies were comparable in terms of sex but the recent study had a higher proportion of respondents aged  $\geq 60$ , those with a primary school education, and rural residents (**Table 2 [a]**).

Compared to the early study, the mean cTTO values from the recent valuation study exhibited a higher logical consistency rate ( $98.47\pm3.61\%$  vs  $95.55\pm8.70\%$ , p-value<0.001), and a greater proportion of respondents who provided consistent responses across all tasks (78.44% vs 56.18%, p-value<0.001).

The cTTO data from the recent valuation study exhibited a higher proportion of responses assigning a value of 1 (8.35% vs. 2.88%) (**Figure 1[a]**). Additionally, compared to the early study, the recent valuation study yielded higher mean observed values for mild health states  $(0.915 \pm 0.134 \text{ vs. } 0.826 \pm 0.237, \text{ p-value} < 0.001)$  and lower mean observed values for severe health states  $(-0.177 \pm 0.561 \text{ vs. } -0.061 \pm 0.593, \text{ p-value} < 0.001)$  (**Figure 1[b]**, **Appendix Table 1**). The coefficient estimate for the study time variable was statistically significant in the multiple regression model for mild states (0.088; 95% confidence interval [CI]: 0.066, 0.110) and for severe states (-0.086; 95% CI: -0.148, -0.024). The residency variable was statistically significant only in the model for mild states (-0.019; 95%CI: -0.033, -0.005). No interaction terms were found to be statistically significant in any of the multiple regression models.

Compared to the early study, model-predicted values from the recent valuation study were higher for mild health states and lower for severe health states (**Figure 1 [c]**), with the value range being widened from (-0.339, 0.881) to (-0.541, 0.967). The rank order of five dimensional disutility changed from MO (0.303), PD (0.268), AD (0.224), SC (0.222), UA (0.204) in the early study to PD (0.425), AD (0.301), MO (0.289), UA (0.252), and SC (0.241).

The proportion of WTD states among the 3125 possible health states increased in the recent study compared to the early study (15.20% vs 10.27%).

#### Singaporean EQ-5D-5L value set studies

The demographic characteristics of respondents in the recent and early Singaporean valuation studies were comparable in terms of sex and ethnicity but the recent study had a higher proportion of those aged  $\geq 65$ , those with a university education or higher, and those who were single (**Table 2 [b]**).

Relative to the early study, the cTTO data from the recent valuation study exhibited similar individual logical consistency rates (97.76  $\pm$  2.67% vs 98.09  $\pm$  4.63%, p-value=0.140) but a significantly lower proportion of respondents who provided consistent responses across all tasks (32.60% vs 76.80%, p-value<0.001).

The cTTO data from the recent valuation study had a higher proportion of 1 value (15.03% vs 9.48%) and a lower proportion of -1 value (14.73% vs 22.20%) (**Figure 2[a]**). The recent valuation study tended to yield higher mean observed values for mild (0.901  $\pm$  0.202 vs. 0.798  $\pm$  0.366, p-value<0.001) and moderate health states (0.135  $\pm$  0.671 vs. 0.047  $\pm$  0.668, p-value=0.001) (**Figure 2[b]**, **Appendix Table 1**). The coefficient estimate for the study time variable was statistically significant in the multiple regression model for mild states (0.111; 95% CI: 0.054, 0.168) but not in the models for moderate and severe states. The age variable was significant across all three models and the ethnicity variable was significant in the models for mild (0.123; 95% CI: 0.038, 0.207) and moderate states (0.174; 95% CI: 0.014, 0.335).

Compared to the early study, model-predicted values from the recent valuation study were higher for mild and moderate health states (**Figure 2** [c]), and the value range widened from (-0.569, 0.823) to (-0.653, 0.960). The rank order of the five dimensional disutility changed from AD (0.318), PD (0.310), MO (0.291), SC (0.259), UA (0.214) in the early study to PD (0.445), AD (0.365), MO (0.304), SC (0.250) and UA (0.250) in the recent study. The proportion of WTD states among the 3125 possible health states decreased in the recent study compared to the early study (34.43% vs 41.86%).

#### Discussion

This study compared the cTTO data and the resultant value sets from recent EQ-5D-5L value set studies in China and Singapore with their respective early counterparts. The findings reveal significant differences between the recent and early studies in terms of value distribution, mean health state values, and dimensional disutility. These results suggest the potential necessity of periodically updating value sets to ensure that they remain reflective of contemporary population health preferences.

A key observation in both countries was the differences in observed health state valuations and dimensional disutility between the early and recent studies. Several factors likely contributed to these differences, including advancements in valuation technology, changes in population composition, and change in societal preferences. First, valuation method refinements have played a crucial role in improving data quality and could be a potential source for the observed differences. Earlier valuation studies, including the early Chinese and Singaporean studies, had less rigorous interviewer training and lacked formal QC processes. Previous EQ-5D-5L valuation studies using the EQ-VT 1.0 protocol exhibited high inconsistency rates and low values for mild health states [7, 12]. This was also evident in the early Chinese study, where the lack of QC measures likely resulted in higher inconsistency rates. The enhancements in interviewer training and EQ-VT protocol in the recent studies likely contributed to more extreme TTO values, namely, higher values for mild states and lower values for severe states. Indeed, value set studies using the EQ-VT protocol version 2 generally reported a larger magnitude of value set coefficient for PD compared to those using the EQ-VT protocol version 1 [6].

Second, changes in population composition could have contributed to the observed differences in health state valuations. Previous studies have shown that health preferences are associated with a variety of individual characteristics, including age, gender, ethnicity, education level, marital status, and residence [22-27]. In both China and Singapore, the demographic characteristics of study samples in the early and recent studies differed because of population aging. Additionally, the recent Chinese valuation study expanded geographic coverage and included rural residents, leading to a more representative sample compared to the earlier study. In the Chinese studies, our multiple regression analyses suggest that rural residents tended to assign lower values to mild health states compared to urban residents. This finding is consistent with previous studies by Liu et al. [23]and Liao et al. [22], which explored urban/rural differences in preferences for EQ-5D-3L and EQ-5D-5L health states, respectively. However,

a study by Zhuo et al. [28] reported that rural residents tended to assign higher values to EQ-5D-3L states compared to urban residents. The discrepancy between these studies might be attributed to differences in TTO methods. Unlike other studies, Zhuo et al. [28] employed a non-iterative, open-ended TTO which did not introduce immediate death following hypothetical life scenarios. In the Singaporean studies, our findings suggest that middle-aged and older respondents, as well as Chinese respondents tended to assign lower values to moderate and severe health states compared to younger and non-Chinese respondents, respectively. A recent study suggests that preferences for immediate death over living in poor health in Singapore are primarily driven by concerns about becoming a burden to family members, particularly among middle-aged respondents [29]. This may partly explain our finding that middle-aged respondents assigned lower values to moderate and severe health

Third, societal preferences related to health may have shifted over time. The observed changes in the ranking of dimensional disutility in both China and Singapore may indicate evolving societal attitudes toward health. The past decade has been marked by substantial advancements in both economic development and technological innovation. In particular, the COVID-19 pandemic has exerted a profound influence on society and global systems [30]. A growing body of evidence suggests that the pandemic has prompted shifts in preferences related to health and healthcare services [31, 32]. The observed shift in ranking of dimensional disutility is particularly pronounced in the Chinese studies, where the importance of MO has declined while that of PD has risen. One plausible explanation is that rapid urbanization and substantial infrastructure development over the past decade have lessened the everyday impact of mobility limitations in China [6, 33]. Additionally, with technology advancements and labor market shifts, fewer individuals are engaged in physically demanding jobs, which may contribute to a lower valuation of mobility limitations. In addition, findings from the Singaporean studies indicated a notable interaction between study time and age in the multiple regression analyses for mild and moderate states. Specifically, the results suggest that the preferences of older adults in Singapore may have shifted over time, with current older adults perceiving mild and moderate health problems as less concerning compared to their counterparts a decade ago. One possible reason for this shift is the increased government subsidies for healthcare available for older adults in Singapore nowadays [34], which may have alleviated concerns about managing mild and moderate health conditions. Collectively, as societies develop, certain health problems may become more or less salient in affecting people's life and well-being, ultimately

# Prepared for the 5<sup>th</sup> EuroQol Early Career Researcher Meeting (Barcelona, Spain, 2025)

reshaping their health preferences over time. Additionally, it is noteworthy that the ranking of dimensional disutility in both countries appear to be evolving towards patterns observed in western countries/areas, where PD or AD is usually the most important dimension, followed by MO, SC and UA [35].

Given that health-state utility values are crucial to economic evaluations, outdated value sets may lead to biased QALY estimates, potentially misinforming healthcare decision-making. Our findings suggest the potential need to periodically update value sets. However, it should be acknowledged that this process comes with challenges [1, 5]. Updating value sets is costly and resource-intensive and may divert resources from other research priorities, underscoring the need for a structured evaluation framework to assess its necessity. Additionally, decision-makers may be hesitant to switch from widely used existing value sets due to concerns about comparability and consistency between past and present evaluations. The availability of multiple competing value sets may also induce the 'cherry-picking' behavior, where certain value sets are selectively used to favor specific outcomes. To address these challenges, the transition to a recent value set demands strong stakeholder engagement and a well-structured process for managing its implementation.

Due to the limited number of instances where EQ-5D value sets have been updated, this study specifically utilized data from China and Singapore. As a results, the generalizability of our findings to other countries or regions may be limited. In addition, this study has not evaluated how the differences between the early and recent value sets would influence health economic evaluations in real-world settings by using empirical data, such as clinical trial data. Incorporating such data would enable a direct comparison of QALY estimations and provide insights into the implications for cost-utility analyses. Future research could address this gap to provide a more comprehensive understanding of the shelf life of value sets.

#### Conclusion

In both China and Singapore, the cTTO values of EQ-5D-5L health states from the recent valuation studies and the value sets based on them differed with those derived from the early valuation studies. Although improved valuation technology and changes in population composition might have contributed to the differences, there is some evidence suggesting the evolving of the general public's health preferences in the past decade in these two countries. Our findings highlight the possible need of periodically updating EQ-5D value sets.

|                                                         | China (Recent)                                                                                                                                                                                                                                                                                                                                            | China (Early)                                                                     | Singapore (Recent)                                                                                               | Singapore (Early)                                                                                                |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Time of data collection                                 | 2023                                                                                                                                                                                                                                                                                                                                                      | 2012                                                                              | 2023-2024                                                                                                        | 2014-2015                                                                                                        |
| Data collection mode                                    | CAPI via face-to-face interviews                                                                                                                                                                                                                                                                                                                          | CAPI via face-to-face                                                             | CAPI via face-to-face                                                                                            | CAPI via face-to-face                                                                                            |
|                                                         |                                                                                                                                                                                                                                                                                                                                                           | interviews                                                                        | interviews and video<br>conferencing                                                                             | interviews                                                                                                       |
| Sample size (analyzed)                                  | 1206                                                                                                                                                                                                                                                                                                                                                      | 1271                                                                              | 500                                                                                                              | 1000                                                                                                             |
| Sampling area                                           | <ul> <li>15 provinces/cities covering 5 different<br/>geographical parts of China including:<br/>North China (Beijing, Tianjin,<br/>Heilongjiang, Shandong, Shanxi), East<br/>China (Shanghai, Jiangsu), South China<br/>(Guangdong, Fujian), Central China<br/>(Henan, Anhui), and West China</li> <li>(Guizhou, Chongqing Sichuan, Shaanxi).</li> </ul> | 5 metropolitan cities:<br>Beijing, Shenyang,<br>Nanjing, Chengdu, and<br>Guiyang. | Covering all 5 regions:<br>Central Region, North<br>Region, North-East<br>Region, East Region and<br>West Region | Covering all 5 regions:<br>Central Region, North<br>Region, North-East<br>Region, East Region and<br>West Region |
| Sampling method                                         | Quota sampling (age, sex, education<br>level, registered residence area<br>[rural/urban])                                                                                                                                                                                                                                                                 | Quota sampling (age, sex,<br>education level)                                     | Quota sampling (age, sex, ethnicity, education level)                                                            | Quota sampling (age,<br>sex, ethnicity, education<br>level)                                                      |
| Protocol version                                        | EQ-VT 2.1                                                                                                                                                                                                                                                                                                                                                 | EQ-VT 1.0                                                                         | EQ-VT 2.1 (Lite)                                                                                                 | EQ-VT 1.1                                                                                                        |
| Quality control                                         | Yes                                                                                                                                                                                                                                                                                                                                                       | No                                                                                | Yes                                                                                                              | Yes                                                                                                              |
| procedure                                               |                                                                                                                                                                                                                                                                                                                                                           |                                                                                   |                                                                                                                  |                                                                                                                  |
| Number of health states                                 | 86                                                                                                                                                                                                                                                                                                                                                        | 86                                                                                | 91                                                                                                               | 86                                                                                                               |
| Number of health states<br>valued by each<br>respondent | 10                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                | 20                                                                                                               | 10                                                                                                               |

# Table 1. Study design of the four EQ-5D-5L value set studies

CAPI, computer-assisted personal interview

|                                                  | China (<br>n=1) | Recent,<br>206) | China<br>n=1 | China (Early,<br>n=1271) |                      |
|--------------------------------------------------|-----------------|-----------------|--------------|--------------------------|----------------------|
|                                                  | n               | %               | n            | %                        | p-value <sup>a</sup> |
| Age                                              |                 |                 |              |                          | <0.001               |
| 18-29                                            | 184             | 15.26           | 313          | 24.63                    |                      |
| 30-39                                            | 253             | 20.98           | 244          | 19.20                    |                      |
| 40-49                                            | 225             | 18.66           | 272          | 21.40                    |                      |
| 50-59                                            | 256             | 21.23           | 220          | 17.31                    |                      |
| ≥60                                              | 288             | 23.88           | 222          | 17.47                    |                      |
| Sex                                              |                 |                 |              |                          | 0.883                |
| Female                                           | 598             | 49.59           | 634          | 49.88                    |                      |
| Male                                             | 608             | 50.41           | 637          | 50.12                    |                      |
| Education                                        |                 |                 |              |                          | <0.001               |
| Primary school                                   | 304             | 25.21           | 138          | 10.86                    |                      |
| Junior high                                      | 284             | 23.55           | 396          | 31.16                    |                      |
| High school or professional high                 | 391             | 32.42           | 446          | 35.09                    |                      |
| University and above                             | 227             | 18.82           | 291          | 22.90                    |                      |
| Employment                                       |                 |                 |              |                          | <0.001               |
| Working                                          | 702             | 58.21           | 827          | 65.07                    |                      |
| Retired                                          | 164             | 13.60           | 240          | 18.88                    |                      |
| Students                                         | 113             | 9.37            | 115          | 9.05                     |                      |
| Farming                                          | 136             | 11.28           | 20           | 1.57                     |                      |
| Others                                           | 91              | 7.55            | 69           | 5.43                     |                      |
| Insurance                                        | , -             |                 | •            |                          |                      |
| Urban employee basic medical insurance           | 449             | 37.23           | 551          | 43.35                    | 0.002                |
| Resident's basic medical insurance               | 756             | 62.69           | 615          | 48.39                    | < 0.001              |
| Commercial insurance                             | 159             | 13.18           | 156          | 12.27                    | 0.497                |
| Other insurance                                  | 73              | 6.05            | 171          | 13.45                    | <0.001               |
| No insurance                                     | 11              | 0.91            | 56           | 4.41                     | < 0.001              |
| Residency                                        |                 |                 |              |                          |                      |
| Urban                                            | 765             | 63.43           |              |                          |                      |
| Rural                                            | 441             | 36 57           |              |                          |                      |
| Ethnicity                                        |                 | 50.57           |              |                          |                      |
| Han                                              | 1 144           | 94 86           |              |                          |                      |
| Minority                                         | 62              | 5 14            |              |                          |                      |
| Marital status                                   | 02              | 5.14            |              |                          |                      |
| Single                                           | 214             | 17 74           |              |                          |                      |
| Married                                          | 926             | 76 78           |              |                          |                      |
| Divorced                                         | 29              | 2 40            |              |                          |                      |
| Widowed                                          | 37              | 2.40            |              |                          |                      |
| FO VAS (maan SD)                                 | 82.78           | 11.07           | 85.06        | 11.46                    | <0.001               |
| EQ VAS (mean, SD)<br>Experienced serious illness | 03.20           | 11.07           | 85.90        | 11.40                    | <0.001               |
| In yoursalf                                      | 407             | 22 75           | 257          | 20.22                    | <0.001               |
| III yoursell<br>In your family                   | 407<br>507      | 33.73<br>12.04  | 237<br>170   | 20.22                    | <0.001<br>0.027      |
| In your failing<br>In coring for others          | 107             | 42.04<br>15.01  | 4/9<br>507   | 30.09                    | 0.047<br>~0.001      |
| In caring 101 Offices                            | 101             | 2 41            | 05.00        | 070                      |                      |
| 6 of respondents who made consistent responses   | 90.47           | 3.01            | 93.22        | 0.70                     | <0.001               |
| across all tasks                                 | 78.             | .44             | 56.18        |                          | <0.001               |

# **Table 2.** Characteristics of respondents and their valuation behaviours(a) Chinese EQ-5D-5L value set studies

SD, standard deviation

<sup>a</sup> Pearson's chi-squared test or two-sample t-test

#### **Table 2**. Characteristics of respondents and their valuation behaviours (b) Singaporean EQ-5D-5L value set studie

| (b) Singaporean EQ-5D-5L v                                      | alue set s<br>Sing<br>(Re<br>N- | apore<br>cent,             | Singa<br>(Ea<br>N–1 | apore<br>arly, |                      |
|-----------------------------------------------------------------|---------------------------------|----------------------------|---------------------|----------------|----------------------|
|                                                                 | n                               | <u> </u>                   | n 11-1              | <u>0/</u>      | n-vəlue <sup>a</sup> |
| Δσο                                                             |                                 | /0                         | 11                  | /0             | $\sim 0.001$         |
| 21_AA                                                           | 210                             | <i>1</i> 2 00              | 509                 | 50.90          | <0.001               |
| 45-64                                                           | 178                             | 35.60                      | 361                 | 36.10          |                      |
| -5-0-1<br>>6 <b>5</b>                                           | 112                             | 22.00                      | 130                 | 13.00          |                      |
| Sov                                                             | 112                             | 22.40                      | 150                 | 15.00          | 0.257                |
| Female                                                          | 249                             | 49 80                      | 529                 | 52 90          | 0.237                |
| Male                                                            | 251                             | <del>4</del> 9.00<br>50.20 | 471                 | <i>4</i> 7 10  |                      |
| Fibnicity                                                       | 231                             | 50.20                      | 7/1                 | 77.10          | 0 234                |
| Chinese                                                         | 384                             | 76 80                      | 753                 | 75 30          | 0.254                |
| Malay                                                           | 71                              | 14 20                      | 128                 | 12.80          |                      |
| Indian                                                          | 34                              | 6.80                       | 99                  | 9.90           |                      |
| Others                                                          | 11                              | 2.00                       | 20                  | 2.00           |                      |
| Education                                                       | 11                              | 2.20                       | 20                  | 2.00           | <0.001               |
| No formal education                                             | 6                               | 1 20                       | 21                  | 2 10           | <0.001               |
| Primary PSL F                                                   | 19                              | 3.80                       | 141                 | 14 10          |                      |
| Secondary 'N' level 'O' level                                   | 1/8                             | 29.60                      | 300                 | 30.00          |                      |
| Post secondary (Non-Tertiary) 'A' level ITE Nitec Higher        | 6/                              | 12.80                      | 76                  | 7.60           |                      |
| Nitec vocational                                                | 04                              | 12.00                      | 70                  | 7.00           |                      |
| Diploma & Professional Qualification                            | 94                              | 18.80                      | 188                 | 18.80          |                      |
| University & above                                              | 169                             | 33.80                      | 251                 | 25.10          |                      |
| Refused                                                         | 0                               | 0                          | 14                  | 1 40           |                      |
| Marital status                                                  | U                               | 0                          | 14                  | 1.40           | <0.001               |
| Single                                                          | 176                             | 35 20                      | 273                 | 27 30          |                      |
| Married                                                         | 273                             | 54.60                      | 671                 | 67.10          |                      |
| Widowed                                                         | 17                              | 3 40                       | 22                  | 2 20           |                      |
| Divorced/separated                                              | 34                              | 6.80                       | 25                  | 2.50           |                      |
| Refused                                                         | 0                               | 0                          | 9                   | 0.90           |                      |
| Employment                                                      | U                               | Ū                          | ,                   | 0.70           | <0.001               |
| Employed/self-employed                                          | 337                             | 67 40                      | 643                 | 64 30          |                      |
| Retired                                                         | 84                              | 16.80                      | 123                 | 12.30          |                      |
| Student                                                         | 45                              | 9.00                       | 56                  | 5 60           |                      |
| Looking after home                                              | 25                              | 5.00                       | 167                 | 16 70          |                      |
| Refused                                                         | 9                               | 1.80                       | 11                  | 1.10           |                      |
| Housing type                                                    | -                               |                            |                     |                | <0.001               |
| HDB 1 or 2 room flat                                            | 24                              | 4.80                       | 39                  | 3.90           |                      |
| HDB 3 room flat                                                 | 83                              | 16.60                      | 205                 | 20.50          |                      |
| HDB 4 room flat                                                 | 183                             | 36.60                      | 427                 | 42.70          |                      |
| HDB 5 room or executive flat                                    | 130                             | 26.00                      | 264                 | 26.40          |                      |
| Condominium & other apartments                                  | 58                              | 11.60                      | 33                  | 3.30           |                      |
| Landed properties                                               | 21                              | 4.20                       | 0                   | 0              |                      |
| Refused                                                         | 1                               | 0.20                       | 32                  | 3.20           |                      |
| EO VAS (mean, SD)                                               | 81.89                           | 12.24                      | 79.55               | 12.53          | 0.001                |
| Experienced serious illness                                     | 0110)                           |                            | 12100               | 12100          | 00001                |
| In vourself                                                     | 231                             | 46.20                      | 62                  | 6.20           | <0.001               |
| In your family                                                  | 293                             | 58.60                      | 210                 | 21.00          | <0.001               |
| In caring for others                                            | 128                             | 25.60                      | 161                 | 16.10          | <0.001               |
| Individual logical consistency rate (mean, SD), %               | 97.76                           | 2.67                       | 98.09               | 4.63           | 0.140                |
| % of respondents who made consistent responses across all tasks | 32                              | 2.60                       | 76                  | .80            | <0.001               |

SD, standard deviation

<sup>a</sup> Pearson's chi-squared test or two-sample t-test

|                               | Mild states (n=4176)    | Moderate states (n=13621) | Severe states (n=6973)  |
|-------------------------------|-------------------------|---------------------------|-------------------------|
| Value                         | Coefficient (95%CI)     | Coefficient (95%CI)       | Coefficient (95%CI)     |
| Intercept                     | 1.242 (1.190, 1.294)    | 1.373 (1.319, 1.427)      | 1.303 (1.237, 1.368)    |
| LSS                           | -0.062 (-0.070, -0.055) | -0.074 (-0.077, -0.071)   | -0.067 (-0.070, -0.065) |
| Study time (ref: Early study) |                         |                           |                         |
| Recent study                  | 0.088 (0.066, 0.110)    | 0.001 (-0.049, 0.051)     | -0.086 (-0.148, -0.024) |
| Age (ref: <45)                |                         |                           |                         |
| 45-64                         | -0.019 (-0.045, 0.007)  | 0.005 (-0.043, 0.053)     | -0.016 (-0.071, 0.039)  |
| ≥65                           | 0.026 (-0.012, 0.064)   | 0.027 (-0.053, 0.108)     | -0.034 (-0.128, 0.060)  |
| Sex (ref: Female)             |                         |                           |                         |
| Male                          | -0.01 (-0.034, 0.013)   | -0.024 (-0.069, 0.021)    | 0.029 (-0.023, 0.081)   |
| Residency (ref: Urban)        |                         |                           |                         |
| Rural                         | -0.019 (-0.033, -0.005) | 0.019 (-0.022, 0.060)     | 0.005 (-0.045, 0.054)   |
| Study time x Age              |                         |                           |                         |
| Recent study x Age 45-64      | 0.018 (-0.011, 0.047)   | 0.008 (-0.055, 0.071)     | -0.023 (-0.097, 0.051)  |
| Recent study x Age ≥65        | -0.031 (-0.076, 0.013)  | -0.002 (-0.102, 0.098)    | 0.009 (-0.111, 0.129)   |
| Study time x Sex              |                         |                           |                         |
| Recent study x Male           | 0.006 (-0.021, 0.033)   | 0.015 (-0.043, 0.074)     | -0.046 (-0.115, 0.023)  |
| Internetion town Descut stal  | · * D                   | an of colling conitry     |                         |

# **Table 3.** Results of multiple linear regression models.(a) Chinese EQ-5D-5L value set studies

Interaction term Recent study \* Rural was omitted because of collinearity

# (b) Singaporean EQ-5D-5L value set studies

|                               | Mild states (n=3383)    | Moderate states (n=11060) | Severe states (n=5057)  |
|-------------------------------|-------------------------|---------------------------|-------------------------|
| Value                         | Coefficient (95%CI)     | Coefficient (95%CI)       | Coefficient (95%CI)     |
| Intercept                     | 1.240 (1.165, 1.315)    | 1.364 (1.264, 1.463)      | 0.939 (0.829, 1.050)    |
| LSS                           | -0.064 (-0.074, -0.053) | -0.081 (-0.085, -0.076)   | -0.055 (-0.058, -0.051) |
| Study time (ref: Early study) |                         |                           |                         |
| Recent study                  | 0.111 (0.054, 0.168)    | 0.052 (-0.093, 0.197)     | -0.054 (-0.209, 0.102)  |
| Age (ref: <45)                |                         |                           |                         |
| 45-64                         | -0.040 (-0.084, 0.004)  | -0.124 (-0.198, -0.051)   | -0.109 (-0.185, -0.033) |
| ≥65                           | -0.141 (-0.218, -0.064) | -0.252 (-0.363, -0.142)   | -0.189 (-0.297, -0.081) |
| Sex (ref: Female)             |                         |                           |                         |
| Male                          | 0.010 (-0.030, 0.050)   | 0.015 (-0.053, 0.082)     | 0.020 (-0.050, 0.090)   |
| Ethnicity (ref: Non-Chinese)  |                         |                           |                         |
| Chinese                       | 0.012 (-0.034, 0.059)   | -0.096 (-0.173, -0.019)   | -0.096 (-0.180, -0.011) |
| Study time x Age              |                         |                           |                         |
| Recent study x Age 45-64      | 0.007 (-0.049, 0.063)   | 0.056 (-0.069, 0.181)     | 0.059 (-0.067, 0.185)   |
| Recent study x Age ≥65        | 0.123 (0.038, 0.207)    | 0.174 (0.014, 0.335)      | 0.155 (-0.006, 0.315)   |
| Study time x Sex              |                         |                           |                         |
| Recent study x Male           | 0.002 (-0.047, 0.051)   | -0.063 (-0.173, 0.047)    | -0.041 (-0.153, 0.072)  |
| Study time x Ethnicity        |                         |                           |                         |
| Recent study x Chinese        | -0.041 (-0.099, 0.016)  | 0.041 (-0.090, 0.172)     | 0.034 (-0.104, 0.173)   |

| Table 4. Modelli | ng results | of CALE | models in | Chinese stud | lies |
|------------------|------------|---------|-----------|--------------|------|
|                  | 0          |         |           |              |      |

|                                                        | China | (Recent,  | N=1206) | China (Early, N=1271) |           |         | Singapore (Recent, |            |         | Singapore (Early, |            |         |
|--------------------------------------------------------|-------|-----------|---------|-----------------------|-----------|---------|--------------------|------------|---------|-------------------|------------|---------|
|                                                        |       |           |         |                       |           |         | N=500)             |            |         |                   | N=1000     | )       |
|                                                        | Coef. | SE        | p-value | Coef.                 | SE        | p-value | Coef.              | SE         | p-value | Coef.             | SE         | p-value |
| Intercept                                              | 0.033 | 0.012     | 0.007   | 0.119                 | 0.014     | < 0.001 | 0.040              | 0.019      | < 0.001 | 0.177             | 0.021      | < 0.001 |
| МО                                                     | 0.289 | 0.011     | < 0.001 | 0.303                 | 0.013     | < 0.001 | 0.304              | 0.016      | < 0.001 | 0.291             | 0.018      | < 0.001 |
| SC                                                     | 0.241 | 0.011     | < 0.001 | 0.222                 | 0.013     | < 0.001 | 0.250              | 0.017      | < 0.001 | 0.259             | 0.018      | < 0.001 |
| UA                                                     | 0.252 | 0.011     | < 0.001 | 0.204                 | 0.013     | < 0.001 | 0.250              | 0.016      | < 0.001 | 0.214             | 0.018      | < 0.001 |
| PD                                                     | 0.425 | 0.011     | < 0.001 | 0.268                 | 0.013     | < 0.001 | 0.445              | 0.016      | < 0.001 | 0.310             | 0.017      | < 0.001 |
| AD                                                     | 0.301 | 0.011     | < 0.001 | 0.224                 | 0.013     | < 0.001 | 0.365              | 0.017      | < 0.001 | 0.318             | 0.019      | < 0.001 |
| L2                                                     | 0.134 | 0.018     | < 0.001 | 0.191                 | 0.026     | < 0.001 | 0.209              | 0.025      | < 0.001 | 0.276             | 0.031      | < 0.001 |
| L3                                                     | 0.377 | 0.015     | < 0.001 | 0.459                 | 0.022     | < 0.001 | 0.440              | 0.022      | < 0.001 | 0.530             | 0.028      | < 0.001 |
| _L4                                                    | 0.779 | 0.014     | < 0.001 | 0.846                 | 0.021     | < 0.001 | 0.950              | 0.022      | < 0.001 | 0.953             | 0.026      | < 0.001 |
| MAE                                                    |       | 0.028     |         | 0.041                 |           | 0.062   |                    |            | 0.088   |                   |            |         |
| No. of nonmonotonicity                                 |       | 0         |         |                       | 0         |         | 0                  |            |         | 0                 |            |         |
| No. of insignificant coefficients                      |       | 0         |         |                       | 0         |         |                    | 0          |         | 0                 |            |         |
| Range of possible values                               | [-    | 0.541, 0. | 967]    | [-                    | 0.339, 0. | 881]    | [-                 | 0.653, 0.9 | 960]    | [-                | 0.569, 0.8 | 323]    |
| Ranking of dimensions                                  | PD>A  | AD>MO>    | ·UA>SC  | MO>                   | PD>AD>    | >SC>UA  | PD>A               | AD>MO>     | SC=UA   | AD>               | PD>MO>     | SC>UA   |
| Value for 22222                                        |       | 0.765     |         |                       | 0.647     |         |                    | 0.623      |         |                   | 0.438      |         |
| Value for 33333                                        |       | 0.398     |         |                       | 0.321     |         |                    | 0.251      |         |                   | 0.085      |         |
| Value for 44444                                        |       | -0.207    |         |                       | -0.152    | ,<br>,  |                    | -0.572     |         |                   | -0.504     |         |
| Value for 55555                                        |       | -0.541    |         |                       | -0.339    | )       | -0.653             |            |         | -0.569            |            |         |
| Percentage of WTD states out of 3125 health states (%) |       | 15.20     |         |                       | 10.27     |         | 34.43              |            |         | 41.86             |            |         |

AD, anxiety/depression; MAE, mean absolute error by leaving one health state out each time; MO, mobility; PD, pain/discomfort; SC, self-care; SE, standard error; UA, usual activities; WTD, worse-than-dead





(a) Histograms of observed TTO values for the 86 EQ-5D-5L health states.



(c) Scatter plots of predicted values for the 3125 EQ-5D-5L health states by CALE models.









Singapore



(c) Scatter plots of predicted values for the 3125 EQ-5D-5L health states by CALE models.

|          |         | China | (Recent, N | (= <b>1206</b> ) | China | (Early, N= | =1271) |                         |         |
|----------|---------|-------|------------|------------------|-------|------------|--------|-------------------------|---------|
| Severity | Profile | n     | Mean       | SD               | n     | Mean       | SD     | Unadjusted              | p-value |
|          |         |       |            |                  |       |            |        | mean                    |         |
|          |         |       |            |                  |       |            |        | difference <sup>a</sup> |         |
|          |         |       |            |                  |       |            |        |                         |         |
| Mild     | 11112   | 245   | 0.954      | 0.086            | 268   | 0.871      | 0.227  | 0.083                   | <0.001  |
| Mild     | 21111   | 257   | 0.945      | 0.112            | 249   | 0.852      | 0.199  | 0.093                   | <0.001  |
| Mild     | 11121   | 228   | 0.945      | 0.099            | 253   | 0.852      | 0.223  | 0.092                   | <0.001  |
| Mild     | 12111   | 248   | 0.941      | 0.114            | 237   | 0.871      | 0.150  | 0.070                   | <0.001  |
| Mild     | 11211   | 228   | 0.940      | 0.088            | 264   | 0.842      | 0.238  | 0.098                   | <0.001  |
| Mild     | 11221   | 111   | 0.904      | 0.120            | 111   | 0.837      | 0.146  | 0.067                   | <0.001  |
| Mild     | 12112   | 114   | 0.897      | 0.128            | 123   | 0.817      | 0.220  | 0.080                   | 0.001   |
| Mild     | 11212   | 114   | 0.893      | 0.172            | 123   | 0.800      | 0.269  | 0.092                   | 0.002   |
| Mild     | 21112   | 115   | 0.887      | 0.139            | 133   | 0.758      | 0.299  | 0.129                   | <0.001  |
| Mild     | 11122   | 137   | 0.886      | 0.130            | 126   | 0.821      | 0.183  | 0.066                   | 0.001   |
| Mild     | 12121   | 119   | 0.881      | 0.135            | 148   | 0.765      | 0.309  | 0.116                   | <0.001  |
| Mild     | 13122   | 109   | 0.735      | 0.226            | 116   | 0.675      | 0.330  | 0.060                   | 0.113   |
| Moderate | 11421   | 143   | 0.673      | 0.262            | 126   | 0.640      | 0.353  | 0.033                   | 0.381   |
| Moderate | 14113   | 129   | 0.631      | 0.270            | 149   | 0.521      | 0.423  | 0.109                   | 0.012   |
| Moderate | 13313   | 143   | 0.626      | 0.232            | 126   | 0.608      | 0.361  | 0.019                   | 0.610   |
| Moderate | 25122   | 143   | 0.617      | 0.287            | 126   | 0.575      | 0.396  | 0.043                   | 0.310   |
| Moderate | 25222   | 113   | 0.584      | 0.295            | 120   | 0.426      | 0.470  | 0.158                   | 0.003   |
| Moderate | 42321   | 137   | 0.578      | 0.291            | 126   | 0.425      | 0.493  | 0.153                   | 0.002   |
| Moderate | 11414   | 113   | 0.543      | 0.345            | 120   | 0.488      | 0.427  | 0.056                   | 0.275   |
| Moderate | 12513   | 115   | 0.543      | 0.313            | 133   | 0.433      | 0.498  | 0.110                   | 0.042   |
| Moderate | 13224   | 137   | 0.531      | 0.340            | 126   | 0.457      | 0.457  | 0.075                   | 0.132   |
| Moderate | 32314   | 116   | 0.524      | 0.331            | 119   | 0.421      | 0.477  | 0.103                   | 0.056   |
| Moderate | 11235   | 111   | 0.507      | 0.404            | 111   | 0.502      | 0.468  | 0.005                   | 0.933   |
| Moderate | 35311   | 137   | 0.501      | 0.363            | 126   | 0.377      | 0.503  | 0.124                   | 0.022   |
| Moderate | 25331   | 113   | 0.480      | 0.338            | 120   | 0.340      | 0.494  | 0.140                   | 0.013   |
| Moderate | 21315   | 129   | 0.470      | 0.409            | 149   | 0.483      | 0.426  | -0.013                  | 0.794   |
| Moderate | 12334   | 116   | 0.461      | 0.412            | 119   | 0.487      | 0.472  | -0.026                  | 0.656   |
| Moderate | 12514   | 111   | 0.455      | 0.382            | 111   | 0.425      | 0.516  | 0.030                   | 0.621   |
| Moderate | 21334   | 116   | 0.448      | 0.394            | 119   | 0.460      | 0.462  | -0.011                  | 0.839   |
| Moderate | 53221   | 115   | 0.439      | 0.408            | 133   | 0.351      | 0.518  | 0.088                   | 0.143   |
| Moderate | 23242   | 116   | 0.412      | 0.364            | 119   | 0.424      | 0.489  | -0.011                  | 0.839   |
| Moderate | 34232   | 137   | 0.412      | 0.385            | 126   | 0.323      | 0.514  | 0.089                   | 0.113   |
| Moderate | 23514   | 119   | 0.396      | 0.379            | 148   | 0.330      | 0.523  | 0.066                   | 0.249   |
| Moderate | 53412   | 116   | 0.384      | 0.366            | 119   | 0.257      | 0.542  | 0.127                   | 0.036   |
| Moderate | 31514   | 113   | 0.373      | 0.409            | 120   | 0.305      | 0.478  | 0.068                   | 0.249   |
| Moderate | 23152   | 114   | 0.371      | 0.395            | 123   | 0.387      | 0.497  | -0.016                  | 0.786   |
| Moderate | 42115   | 109   | 0.353      | 0.425            | 116   | 0.361      | 0.497  | -0.008                  | 0.903   |
| Moderate | 11425   | 109   | 0.352      | 0.433            | 116   | 0.458      | 0.434  | -0.105                  | 0.070   |
| Moderate | 12244   | 143   | 0.338      | 0.409            | 126   | 0.408      | 0.449  | -0.070                  | 0.181   |
| Moderate | 54231   | 111   | 0.313      | 0.454            | 111   | 0.273      | 0.562  | 0.040                   | 0.560   |
| Moderate | 31524   | 129   | 0.307      | 0.419            | 149   | 0.313      | 0.501  | -0.006                  | 0.912   |
| Moderate | 35332   | 109   | 0.303      | 0.436            | 116   | 0.319      | 0.507  | -0.017                  | 0.793   |
| Moderate | 22434   | 109   | 0.300      | 0.413            | 116   | 0.345      | 0.450  | -0.044                  | 0.443   |
| Moderate | 52431   | 129   | 0.293      | 0.429            | 149   | 0.199      | 0.534  | 0.094                   | 0.111   |
| Moderate | 24342   | 116   | 0.278      | 0.420            | 119   | 0.320      | 0.511  | -0.042                  | 0.496   |
| Moderate | 21345   | 114   | 0.259      | 0.455            | 123   | 0.205      | 0.543  | 0.054                   | 0.410   |
| Moderate | 43315   | 129   | 0.236      | 0.471            | 149   | 0.173      | 0.507  | 0.063                   | 0.285   |
| Moderate | 12344   | 115   | 0.234      | 0.461            | 133   | 0.296      | 0.515  | -0.062                  | 0.322   |
|          |         | 1     |            |                  | l I   |            |        |                         |         |

Appendix Table 1. Observed mean values for the EQ-5D-5L health states

| Moderate | 45233    | 143   | 0.220  | 0.465 | 126   | 0.179  | 0.468 | 0.041  | 0.477  |
|----------|----------|-------|--------|-------|-------|--------|-------|--------|--------|
| Moderate | 45133    | 119   | 0.216  | 0.490 | 148   | 0.201  | 0.551 | 0.015  | 0.817  |
| Moderate | 45413    | 109   | 0.195  | 0.452 | 116   | 0.157  | 0.550 | 0.038  | 0.572  |
| Moderate | 12543    | 119   | 0.191  | 0.516 | 148   | 0.283  | 0.543 | -0.092 | 0.161  |
| Moderate | 44125    | 115   | 0.190  | 0.458 | 133   | 0.164  | 0.571 | 0.027  | 0.686  |
| Moderate | 33253    | 116   | 0.189  | 0.434 | 119   | 0.274  | 0.559 | -0.086 | 0.192  |
| Moderate | 35143    | 113   | 0.187  | 0.487 | 120   | 0.110  | 0.579 | 0.077  | 0.274  |
| Moderate | 43514    | 114   | 0.181  | 0.468 | 123   | 0.091  | 0.564 | 0.090  | 0.184  |
| Moderate | 21444    | 113   | 0.178  | 0.479 | 120   | 0.153  | 0.540 | 0.025  | 0.705  |
| Moderate | 32443    | 119   | 0.118  | 0.559 | 148   | 0.229  | 0.552 | -0.110 | 0.108  |
| Moderate | 53243    | 113   | 0.117  | 0.508 | 120   | -0.008 | 0.582 | 0.125  | 0.083  |
| Moderate | 24443    | 129   | 0.110  | 0.465 | 149   | 0.132  | 0.535 | -0.021 | 0.723  |
| Moderate | 34244    | 114   | 0.094  | 0.482 | 123   | 0.059  | 0.535 | 0.035  | 0.599  |
| Moderate | 43542    | 119   | 0.011  | 0.552 | 148   | 0.047  | 0.600 | -0.036 | 0.614  |
| Moderate | 54342    | 115   | 0.003  | 0.508 | 133   | 0.051  | 0.524 | -0.048 | 0.470  |
| Moderate | 53244    | 113   | -0.009 | 0.533 | 120   | -0.073 | 0.599 | 0.064  | 0.394  |
| Moderate | 45144    | 111   | -0.042 | 0.499 | 111   | 0.089  | 0.572 | -0.132 | 0.069  |
| Moderate | 24445    | 137   | -0.139 | 0.531 | 126   | -0.018 | 0.568 | -0.121 | 0.076  |
| Moderate | 44345    | 115   | -0.180 | 0.500 | 133   | -0.082 | 0.554 | -0.098 | 0.145  |
| Severe   | 31525    | 143   | 0.276  | 0.440 | 126   | 0.338  | 0.485 | -0.063 | 0.268  |
| Severe   | 52215    | 119   | 0.241  | 0.484 | 148   | 0.267  | 0.547 | -0.025 | 0.692  |
| Severe   | 15151    | 129   | 0.234  | 0.459 | 149   | 0.308  | 0.529 | -0.074 | 0.215  |
| Severe   | 34515    | 111   | 0.175  | 0.464 | 111   | 0.248  | 0.538 | -0.073 | 0.283  |
| Severe   | 51152    | 109   | 0.148  | 0.490 | 116   | 0.210  | 0.545 | -0.063 | 0.366  |
| Severe   | 55233    | 143   | 0.134  | 0.480 | 126   | 0.088  | 0.532 | 0.045  | 0.462  |
| Severe   | 52335    | 137   | 0.111  | 0.487 | 126   | 0.051  | 0.583 | 0.061  | 0.360  |
| Severe   | 51451    | 111   | 0.089  | 0.481 | 111   | 0.191  | 0.540 | -0.102 | 0.138  |
| Severe   | 55225    | 116   | 0.047  | 0.480 | 119   | 0.008  | 0.554 | 0.039  | 0.561  |
| Severe   | 35245    | 111   | 0.035  | 0.484 | 111   | 0.112  | 0.572 | -0.077 | 0.280  |
| Severe   | 54153    | 129   | -0.022 | 0.472 | 149   | 0.067  | 0.526 | -0.089 | 0.142  |
| Severe   | 24553    | 109   | -0.050 | 0.494 | 116   | 0.078  | 0.581 | -0.128 | 0.077  |
| Severe   | 55424    | 114   | -0.079 | 0.483 | 123   | -0.102 | 0.552 | 0.023  | 0.733  |
| Severe   | 34155    | 119   | -0.079 | 0.583 | 148   | 0.068  | 0.581 | -0.148 | 0.040  |
| Severe   | 14554    | 115   | -0.101 | 0.506 | 133   | 0.027  | 0.565 | -0.129 | 0.061  |
| Severe   | 44553    | 114   | -0.214 | 0.490 | 123   | -0.095 | 0.525 | -0.119 | 0.072  |
| Severe   | 52455    | 143   | -0.218 | 0.515 | 126   | -0.049 | 0.554 | -0.169 | 0.010  |
| Severe   | 43555    | 137   | -0.297 | 0.516 | 126   | -0.144 | 0.572 | -0.153 | 0.023  |
| Severe   | 55555    | 1206  | -0.546 | 0.441 | 1271  | -0.341 | 0.536 | -0.205 | <0.001 |
| All st   | ates     | 12060 | 0.279  | 0.583 | 12710 | 0.283  | 0.591 | -0.004 | 0.744  |
| Mild s   | tates    | 2025  | 0.915  | 0.134 | 2151  | 0.826  | 0.237 | 0.088  | <0.001 |
| Moderat  | e states | 6620  | 0.321  | 0.467 | 7001  | 0.292  | 0.535 | 0.026  | 0.085  |
| Severe   | states   | 3415  | -0.177 | 0.561 | 3558  | -0.061 | 0.593 | -0.119 | <0.001 |
| Severe   | 45555    |       |        |       |       |        |       |        |        |
| Severe   | 54555    |       |        |       |       |        |       |        |        |
| Severe   | 55455    |       |        |       |       |        |       |        |        |
| Severe   | 55545    |       |        |       |       |        |       |        |        |
| Severe   | 55554    |       |        |       |       |        |       |        |        |

\_

\_

|          |         | Sing | apore (Re      | ecent, | Singapore (Early, |                 |       |                         |        |
|----------|---------|------|----------------|--------|-------------------|-----------------|-------|-------------------------|--------|
| Soverity | Profile | n    | N=500)<br>Mean | SD     | n                 | N=1000)<br>Mean | SD    | Unadjusted              | n-     |
| Severity | TTOILE  | 11   | wittan         | 50     | 11                | Wiean           | 50    | mean                    | value  |
|          |         |      |                |        |                   |                 |       | difference <sup>a</sup> |        |
| Mild     | 11112   | 207  | 0.925          | 0.202  | 201               | 0.844           | 0.318 | 0.081                   | 0.002  |
| Mild     | 21111   | 188  | 0.934          | 0.133  | 186               | 0.848           | 0.346 | 0.085                   | 0.002  |
| Mild     | 11121   | 195  | 0.945          | 0.129  | 214               | 0.893           | 0.247 | 0.051                   | 0.010  |
| Mild     | 12111   | 201  | 0.922          | 0.190  | 195               | 0.770           | 0.417 | 0.152                   | <0.001 |
| Mild     | 11211   | 209  | 0.924          | 0.178  | 204               | 0.859           | 0.280 | 0.065                   | 0.005  |
| Mild     | 11221   | 98   | 0.864          | 0.241  | 96                | 0.731           | 0.391 | 0.133                   | 0.005  |
| Mild     | 12112   | 96   | 0.884          | 0.185  | 90                | 0.701           | 0.466 | 0.184                   | <0.001 |
| Mild     | 11212   | 96   | 0.872          | 0.213  | 90                | 0.746           | 0.428 | 0.126                   | 0.011  |
| Mild     | 21112   | 92   | 0.877          | 0.188  | 110               | 0.765           | 0.392 | 0.113                   | 0.012  |
| Mild     | 11122   | 103  | 0.877          | 0.234  | 99                | 0.802           | 0.326 | 0.076                   | 0.059  |
| Mild     | 12121   | 98   | 0.874          | 0.229  | 102               | 0.746           | 0.369 | 0.129                   | 0.004  |
| Mild     | 13122   | 111  | 0.779          | 0.309  | 102               | 0.619           | 0.455 | 0.161                   | 0.003  |
| Moderate | 11421   | 92   | 0.609          | 0.422  | 96                | 0.496           | 0.536 | 0.112                   | 0.113  |
| Moderate | 14113   | 96   | 0.549          | 0.539  | 103               | 0.151           | 0.704 | 0.398                   | <0.001 |
| Moderate | 13313   | 92   | 0.557          | 0.524  | 96                | 0.423           | 0.574 | 0.134                   | 0.098  |
| Moderate | 25122   | 92   | 0.368          | 0.601  | 96                | 0.248           | 0.662 | 0.121                   | 0.193  |
| Moderate | 25222   | 103  | 0.473          | 0.546  | 104               | 0.263           | 0.667 | 0.210                   | 0.014  |
| Moderate | 42321   | 103  | 0.443          | 0.567  | 99                | 0.219           | 0.652 | 0.224                   | 0.010  |
| Moderate | 11414   | 103  | 0.365          | 0.574  | 104               | 0.310           | 0.591 | 0.055                   | 0.498  |
| Moderate | 12513   | 92   | 0.399          | 0.544  | 110               | 0.321           | 0.632 | 0.078                   | 0.353  |
| Moderate | 13224   | 103  | 0.372          | 0.610  | 99                | 0.207           | 0.654 | 0.166                   | 0.064  |
| Moderate | 32314   | 111  | 0.312          | 0.612  | 98                | 0.163           | 0.671 | 0.148                   | 0.096  |
| Moderate | 11235   | 98   | 0.349          | 0.627  | 96                | 0.159           | 0.670 | 0.191                   | 0.042  |
| Moderate | 35311   | 103  | 0.440          | 0.615  | 99                | 0.263           | 0.579 | 0.177                   | 0.037  |
| Moderate | 25331   | 103  | 0.369          | 0.636  | 104               | 0.218           | 0.654 | 0.151                   | 0.094  |
| Moderate | 21315   | 96   | 0.344          | 0.641  | 103               | 0.211           | 0.634 | 0.133                   | 0.143  |
| Moderate | 12334   | 111  | 0.329          | 0.582  | 98                | 0.152           | 0.646 | 0.177                   | 0.039  |
| Moderate | 12514   | 98   | 0.160          | 0.669  | 96                | 0.088           | 0.667 | 0.072                   | 0.456  |
| Moderate | 21334   | 111  | 0.257          | 0.617  | 98                | 0.189           | 0.638 | 0.068                   | 0.435  |
| Moderate | 53221   | 92   | 0.286          | 0.606  | 110               | 0.160           | 0.672 | 0.127                   | 0.164  |
| Moderate | 23242   | 111  | 0.208          | 0.636  | 98                | 0.083           | 0.675 | 0.124                   | 0.172  |
| Moderate | 34232   | 103  | 0.304          | 0.654  | 99                | 0.152           | 0.624 | 0.153                   | 0.091  |
| Moderate | 23514   | 98   | 0.095          | 0.661  | 102               | 0.106           | 0.618 | -0.011                  | 0.904  |
| Moderate | 53412   | 111  | 0.187          | 0.644  | 98                | 0.021           | 0.679 | 0.166                   | 0.071  |
| Moderate | 31514   | 103  | 0.180          | 0.659  | 104               | 0.166           | 0.608 | 0.014                   | 0.872  |
| Moderate | 23152   | 96   | 0.188          | 0.667  | 90                | 0.054           | 0.698 | 0.134                   | 0.184  |
| Moderate | 42115   | 111  | 0.245          | 0.569  | 102               | 0.036           | 0.637 | 0.209                   | 0.012  |
| Moderate | 11425   | 111  | 0.249          | 0.624  | 102               | 0.087           | 0.645 | 0.162                   | 0.064  |
| Moderate | 12244   | 92   | -0.114         | 0.650  | 96                | -0.012          | 0.680 | -0.102                  | 0.297  |
| Moderate | 54231   | 98   | 0.151          | 0.684  | 96                | -0.086          | 0.680 | 0.237                   | 0.016  |
| Moderate | 31524   | 96   | 0.256          | 0.611  | 103               | -0.031          | 0.677 | 0.287                   | 0.002  |
| Moderate | 35332   | 111  | 0.251          | 0.611  | 102               | 0.152           | 0.606 | 0.099                   | 0.237  |
| Moderate | 22434   | 111  | 0.151          | 0.648  | 102               | 0.093           | 0.644 | 0.059                   | 0.508  |
| Moderate | 52431   | 96   | 0.189          | 0.617  | 103               | -0.011          | 0.643 | 0.200                   | 0.026  |
| Moderate | 24342   | 111  | -0.039         | 0.660  | 98                | -0.026          | 0.654 | -0.013                  | 0.889  |
| Moderate | 21345   | 96   | 0.022          | 0.678  | 90                | -0.019          | 0.670 | 0.041                   | 0.677  |
| Moderate | 43315   | 96   | 0.123          | 0.668  | 103               | -0.077          | 0.654 | 0.201                   | 0.034  |

Appendix Table 1. Observed mean values for the EQ-5D-5L health states (continued)

| Moderate | 12344     | 92   | -0.095 | 0.660 | 110   | -0.090 | 0.669 | -0.006 | 0.953  |
|----------|-----------|------|--------|-------|-------|--------|-------|--------|--------|
| Moderate | 45233     | 92   | 0.002  | 0.652 | 96    | -0.111 | 0.666 | 0.113  | 0.241  |
| Moderate | 45133     | 98   | 0.067  | 0.652 | 102   | 0.045  | 0.634 | 0.022  | 0.811  |
| Moderate | 45413     | 111  | -0.012 | 0.688 | 102   | -0.100 | 0.610 | 0.087  | 0.330  |
| Moderate | 12543     | 98   | 0.100  | 0.645 | 102   | 0.038  | 0.677 | 0.062  | 0.510  |
| Moderate | 44125     | 92   | -0.134 | 0.655 | 110   | -0.150 | 0.667 | 0.016  | 0.863  |
| Moderate | 33253     | 111  | -0.008 | 0.639 | 98    | -0.017 | 0.661 | 0.009  | 0.918  |
| Moderate | 35143     | 103  | 0.033  | 0.676 | 104   | -0.008 | 0.643 | 0.040  | 0.661  |
| Moderate | 43514     | 96   | 0.013  | 0.679 | 90    | -0.038 | 0.680 | 0.051  | 0.611  |
| Moderate | 21444     | 103  | -0.104 | 0.693 | 104   | -0.059 | 0.657 | -0.045 | 0.630  |
| Moderate | 32443     | 98   | -0.095 | 0.650 | 102   | -0.008 | 0.628 | -0.088 | 0.334  |
| Moderate | 53243     | 103  | -0.066 | 0.670 | 104   | -0.043 | 0.660 | -0.022 | 0.810  |
| Moderate | 24443     | 96   | -0.128 | 0.648 | 103   | -0.187 | 0.654 | 0.059  | 0.522  |
| Moderate | 34244     | 96   | -0.098 | 0.642 | 90    | -0.092 | 0.687 | -0.006 | 0.949  |
| Moderate | 43542     | 98   | -0.150 | 0.687 | 102   | -0.097 | 0.629 | -0.053 | 0.566  |
| Moderate | 54342     | 92   | -0.303 | 0.614 | 110   | -0.281 | 0.656 | -0.022 | 0.809  |
| Moderate | 53244     | 103  | -0.252 | 0.678 | 104   | -0.100 | 0.648 | -0.152 | 0.100  |
| Moderate | 45144     | 98   | -0.270 | 0.657 | 96    | -0.303 | 0.632 | 0.033  | 0.724  |
| Moderate | 24445     | 103  | -0.296 | 0.616 | 99    | -0.345 | 0.601 | 0.050  | 0.561  |
| Moderate | 44345     | 92   | -0.505 | 0.543 | 110   | -0.333 | 0.610 | -0.173 | 0.036  |
| Severe   | 31525     | 92   | 0.104  | 0.650 | 96    | 0.069  | 0.644 | 0.036  | 0.707  |
| Severe   | 52215     | 98   | 0.113  | 0.652 | 102   | -0.022 | 0.641 | 0.135  | 0.140  |
| Severe   | 15151     | 96   | 0.167  | 0.666 | 103   | -0.114 | 0.670 | 0.281  | 0.003  |
| Severe   | 34515     | 98   | -0.122 | 0.645 | 96    | -0.200 | 0.658 | 0.078  | 0.408  |
| Severe   | 51152     | 111  | -0.015 | 0.639 | 102   | -0.134 | 0.639 | 0.119  | 0.175  |
| Severe   | 55233     | 92   | -0.131 | 0.659 | 96    | -0.215 | 0.667 | 0.084  | 0.389  |
| Severe   | 52335     | 103  | -0.003 | 0.682 | 99    | -0.174 | 0.631 | 0.171  | 0.066  |
| Severe   | 51451     | 98   | -0.126 | 0.651 | 96    | -0.195 | 0.644 | 0.070  | 0.454  |
| Severe   | 55225     | 111  | -0.130 | 0.654 | 98    | -0.227 | 0.658 | 0.097  | 0.288  |
| Severe   | 35245     | 98   | -0.248 | 0.649 | 96    | -0.232 | 0.636 | -0.016 | 0.861  |
| Severe   | 54153     | 96   | -0.098 | 0.656 | 103   | -0.226 | 0.640 | 0.128  | 0.166  |
| Severe   | 24553     | 111  | -0.177 | 0.609 | 102   | -0.130 | 0.625 | -0.047 | 0.578  |
| Severe   | 55424     | 96   | -0.248 | 0.660 | 90    | -0.248 | 0.681 | -0.001 | 0.995  |
| Severe   | 34155     | 98   | -0.287 | 0.641 | 102   | -0.124 | 0.637 | -0.163 | 0.072  |
| Severe   | 14554     | 92   | -0.428 | 0.573 | 110   | -0.290 | 0.644 | -0.138 | 0.112  |
| Severe   | 44553     | 96   | -0.367 | 0.595 | 90    | -0.270 | 0.673 | -0.097 | 0.300  |
| Severe   | 52455     | 92   | -0.459 | 0.558 | 96    | -0.344 | 0.630 | -0.115 | 0.188  |
| Severe   | 43555     | 103  | -0.456 | 0.562 | 99    | -0.372 | 0.583 | -0.085 | 0.295  |
| Severe   | 55555     | 500  | -0.638 | 0.492 | 1000  | -0.516 | 0.566 | -0.122 | <0.001 |
| All s    | tates     | 9500 | 0.176  | 0.717 | 10000 | 0.075  | 0.716 | 0.100  | <0.001 |
| Mild     | states    | 1694 | 0.901  | 0.202 | 1689  | 0.798  | 0.366 | 0.092  | <0.001 |
| Moderat  | te states | 5525 | 0.135  | 0.671 | 5535  | 0.047  | 0.668 | 0.087  | 0.002  |
| Severe   | states    | 2281 | -0.265 | 0.656 | 2776  | -0.308 | 0.640 | 0.050  | 0.083  |
|          | 45555     | 98   | -0.608 | 0.505 |       |        |       |        |        |
|          | 54555     | 92   | -0.590 | 0.515 |       |        |       |        |        |
|          | 55455     | 96   | -0.522 | 0.536 |       |        |       |        |        |
|          | 55545     | 111  | -0.536 | 0.526 |       |        |       |        |        |
|          | 55554     | 103  | -0.566 | 0.543 |       |        |       |        |        |

<sup>a</sup> Using univariate linear regression model (early value set study as reference group).

# References

- 1. Devlin, N., B. Roudijk, and K. Ludwig, *Value sets for EQ-5D-5L: a compendium, comparative review & user guide.* 2022.
- 2. Kennedy-Martin, M., et al., *Which multi-attribute utility instruments are recommended for use in cost-utility analysis? A review of national health technology assessment (HTA) guidelines.* The European Journal of Health Economics, 2020. **21**: p. 1245-1257.
- 3. Devlin, N.J. and R. Brooks, *EQ-5D and the EuroQol group: past, present and future.* Applied health economics and health policy, 2017. **15**: p. 127-137.
- 4. Value sets. 2025 [cited 2025 29 January].
- 5. Norman, R., et al., *Value set redundancy: How should we judge whether HRQoL values remain 'fit for purpose'?*, in *Euroqol Plenary Meeting 2024*. 2024: Noordwijk, The Netherlands.
- 6. Poudel, N., et al., *Methodological similarities and variations among EQ-5D-5L value set studies: A systematic review.* Journal of Medical Economics, 2022. **25**(1): p. 571-582.
- 7. Ramos-Goñi, J.M., et al., *Quality control process for EQ-5D-5L valuation studies*. Value in health, 2017. **20**(3): p. 466-473.
- 8. Purba, F.D., et al., *Employing quality control and feedback to the EQ-5D-5L valuation protocol to improve the quality of data collection*. Quality of Life Research, 2017. **26**: p. 1197-1208.
- Luo, N., et al., *Estimating an EQ-5D-5L value set for China*. Value in Health, 2017.
   20(4): p. 662-669.
- 10. Yang, Z., et al., *Re-estimating an EQ-5D-5L value set for China*. Working paper, 2025.
- 11. Luo, N., et al., *Developing the EQ-5D-5L value set for Singapore using the 'Lite' protocol.* Pharmacoeconomics, 2025.
- 12. Stolk, E., et al., *Overview, update, and lessons learned from the international EQ-5D-5L valuation work: version 2 of the EQ-5D-5L valuation protocol.* Value in Health, 2019. **22**(1): p. 23-30.
- 13. Oppe, M., et al., *EuroQol protocols for time trade-off valuation of health outcomes*. Pharmacoeconomics, 2016. **34**: p. 993-1004.
- 14. Rand-Hendriksen, K., et al., *Less is more: cross-validation testing of simplified nonlinear regression model specifications for EQ-5D-5L health state values.* Value in Health, 2017. **20**(7): p. 945-952.
- 15. Yang, F., et al., *Developing the EQ-5D-5L value set for Uganda using the 'lite' protocol.* Pharmacoeconomics, 2022: p. 1-13.
- Roudijk, B., A.R.T. Donders, and P.F. Stalmeier, *Cultural values: can they explain differences in health utilities between countries?* Medical Decision Making, 2019. 39(5): p. 605-616.
- Yang, Z., et al., Cross-attribute level effects models for modeling modified 5-level version of EQ-5D health state values: is less still more? Value in Health, 2023. 26(6): p. 865-872.
- 18. Che, M., et al., *Bayesian models with spatial correlation improve the precision of EQ-*5D-5L value sets. Medical Decision Making, 2023. **43**(5): p. 587-594.
- 19. Bouckaert, N., et al., *An EQ-5D-5L value set for Belgium*. PharmacoEconomics-open, 2022. **6**(6): p. 823-836.
- 20. Garratt, A.M., et al., *EQ-5D-5L value set for Norway: a hybrid model using cTTO and DCE data.* Quality of Life Research, 2024: p. 1-11.
- 21. Rupel, V.P., A. Srakar, and K. Rand, *Valuation of EQ-5D-3l health states in Slovenia: VAS based and TTO based value sets.* Slovenian Journal of Public Health, 2020. **59**(1):

p. 8-17.

- 22. Liao, M., et al., *Urban/rural differences in preferences for EQ-5D-5L health states: A study of a multi-ethnic region in China*. Quality of Life Research, 2023. **32**(8): p. 2329-2339.
- Liu, G.G., et al., *Rural population's preferences matter: a value set for the EQ-5D-3L health states for China's rural population*. Health and quality of life outcomes, 2022.
   20(1): p. 14.
- Al Shabasy, S., et al., *Determinants of health preferences using data from the Egyptian* EQ-5D-5L Valuation Study. The Patient-Patient-Centered Outcomes Research, 2022.
   15(5): p. 589-598.
- 25. Jin, X., et al., *Is bad living better than good death? Impact of demographic and cultural factors on health state preference.* Quality of Life Research, 2016. **25**: p. 979-986.
- 26. Shaw, J.W., et al., *Racial/ethnic differences in preferences for the EQ-5D health states: results from the US valuation study*. Journal of clinical epidemiology, 2007. **60**(5): p. 479-490.
- 27. Sayah, F.A., et al., *Determinants of time trade-off valuations for EQ-5D-5L health states: data from the Canadian EQ-5D-5L valuation study.* Quality of Life Research, 2016. **25**: p. 1679-1685.
- 28. Zhuo, L., et al., *Time trade-off value set for EQ-5D-3L based on a nationally representative Chinese population survey.* Value in Health, 2018. **21**(11): p. 1330-1337.
- 29. Cheng, L.J., A. Vasan Thakumar, and N. Luo, *Who prefers death to life in composite time trade-off interviews and why: A mixed-methods analysis of the Singapore EQ-5D-5L valuation study*, in 41st EuroQol Plenary Meeting 2024. 2024: Rotterdam, the Netherlands.
- 30. Grinin, L., A. Grinin, and A. Korotayev, *COVID-19 pandemic as a trigger for the acceleration of the cybernetic revolution, transition from e-government to e-state, and change in social relations.* Technological Forecasting and Social Change, 2022. **175**: p. 121348.
- Luyten, J. and R. Kessels, Stability of Stated Preferences: Vaccine Priority Setting before and during the First COVID-19 Lockdown. Medical Decision Making, 2023.
   43(4): p. 521-529.
- 32. Degeling, C., et al., *Changes in public preferences for technologically enhanced surveillance following the COVID-19 pandemic: a discrete choice experiment.* BMJ open, 2020. **10**(11): p. e041592.
- 33. Purba, F.D., et al., *The Indonesian EQ-5D-5L value set.* Pharmacoeconomics, 2017. **35**: p. 1153-1165.
- 34. Intermediate and Long-Term Care Services Subsidies. [cited 2025 9th Feburary ].
- 35. Roudijk, B., B. Janssen, and J.A. Olsen, *How do EQ-5D-5L value sets differ?* Value sets for EQ-5D-5L: a compendium, comparative review & user guide, 2022: p. 235-258.